20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevailing model of cerebellar learning states that climbing fibers (CFs) are both driven by, and serve to correct, erroneous motor output. However, this model is grounded largely in studies of behaviors that utilize hardwired neural pathways to link sensory input to motor output. To test whether this model applies to more flexible learning regimes that require arbitrary sensorimotor associations, we have developed a cerebellar-dependent motor learning paradigm compatible with both mesoscale and single dendrite resolution calcium imaging in mice. Here, we find that CFs are preferentially driven by and more time-locked to correctly executed movements and other task parameters that predict reward outcome, exhibiting widespread correlated activity within parasagittal processing zones that is governed by these predictions. Together, such CF activity patterns are well-suited to drive learning by providing predictive instructional input consistent with an unsigned reinforcement learning signal that does not rely exclusively on motor errors.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          A theory of cerebellar cortex.

          D. Marr (1969)
          1. A detailed theory of cerebellar cortex is proposed whose consequence is that the cerebellum learns to perform motor skills. Two forms of input-output relation are described, both consistent with the cortical theory. One is suitable for learning movements (actions), and the other for learning to maintain posture and balance (maintenance reflexes).2. It is known that the cells of the inferior olive and the cerebellar Purkinje cells have a special one-to-one relationship induced by the climbing fibre input. For learning actions, it is assumed that:(a) each olivary cell responds to a cerebral instruction for an elemental movement. Any action has a defining representation in terms of elemental movements, and this representation has a neural expression as a sequence of firing patterns in the inferior olive; and(b) in the correct state of the nervous system, a Purkinje cell can initiate the elemental movement to which its corresponding olivary cell responds.3. Whenever an olivary cell fires, it sends an impulse (via the climbing fibre input) to its corresponding Purkinje cell. This Purkinje cell is also exposed (via the mossy fibre input) to information about the context in which its olivary cell fired; and it is shown how, during rehearsal of an action, each Purkinje cell can learn to recognize such contexts. Later, when the action has been learnt, occurrence of the context alone is enough to fire the Purkinje cell, which then causes the next elemental movement. The action thus progresses as it did during rehearsal.4. It is shown that an interpretation of cerebellar cortex as a structure which allows each Purkinje cell to learn a number of contexts is consistent both with the distributions of the various types of cell, and with their known excitatory or inhibitory natures. It is demonstrated that the mossy fibre-granule cell arrangement provides the required pattern discrimination capability.5. The following predictions are made.(a) The synapses from parallel fibres to Purkinje cells are facilitated by the conjunction of presynaptic and climbing fibre (or post-synaptic) activity.(b) No other cerebellar synapses are modifiable.(c) Golgi cells are driven by the greater of the inputs from their upper and lower dendritic fields.6. For learning maintenance reflexes, 2(a) and 2(b) are replaced by2'. Each olivary cell is stimulated by one or more receptors, all of whose activities are usually reduced by the results of stimulating the corresponding Purkinje cell.7. It is shown that if (2') is satisfied, the circuit receptor --> olivary cell --> Purkinje cell --> effector may be regarded as a stabilizing reflex circuit which is activated by learned mossy fibre inputs. This type of reflex has been called a learned conditional reflex, and it is shown how such reflexes can solve problems of maintaining posture and balance.8. 5(a), and either (2) or (2') are essential to the theory: 5(b) and 5(c) are not absolutely essential, and parts of the theory could survive the disproof of either.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A theory of cerebellar function

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automated analysis of cellular signals from large-scale calcium imaging data.

              Recent advances in fluorescence imaging permit studies of Ca(2+) dynamics in large numbers of cells, in anesthetized and awake behaving animals. However, unlike for electrophysiological signals, standardized algorithms for assigning optically recorded signals to individual cells have not yet emerged. Here, we describe an automated sorting procedure that combines independent component analysis and image segmentation for extracting cells' locations and their dynamics with minimal human supervision. In validation studies using simulated data, automated sorting significantly improved estimation of cellular signals compared to conventional analysis based on image regions of interest. We used automated procedures to analyze data recorded by two-photon Ca(2+) imaging in the cerebellar vermis of awake behaving mice. Our analysis yielded simultaneous Ca(2+) activity traces for up to >100 Purkinje cells and Bergmann glia from single recordings. Using this approach, we found microzones of Purkinje cells that were stable across behavioral states and in which synchronous Ca(2+) spiking rose significantly during locomotion.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                18 January 2019
                17 September 2018
                October 2018
                01 April 2019
                : 21
                : 10
                : 1431-1441
                Affiliations
                [1 ]Department of Neurobiology, Duke University Medical School, Durham, United States
                Author notes
                [2]

                Present Address: Neuroscience Graduate Program, Baylor College of Medicine, Houston, United States

                [3]

                Present Address: Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel

                Author Contributions

                WH, ES, and CH designed experiments, WH, ES, AM, BT, MAH, and MJ conducted experiments, WH, ES, ZX, BT, AM, MJ, and CH analyzed data, and CH wrote the manuscript.

                [* ]Correspondence: Court Hull, Hull@ 123456neuro.duke.edu
                Article
                PMC6362851 PMC6362851 6362851 nihpa1006696
                10.1038/s41593-018-0228-8
                6362851
                30224805
                3b14b4f0-1c03-4846-9eba-4218d13e37c0
                History
                Categories
                Article

                Comments

                Comment on this article