17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass

      ACS Central Science
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemical modification of lignins: Towards biobased polymers

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bright Side of Lignin Depolymerization: Toward New Platform Chemicals

            Lignin, a major component of lignocellulose, is the largest source of aromatic building blocks on the planet and harbors great potential to serve as starting material for the production of biobased products. Despite the initial challenges associated with the robust and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has come a long way: recently, many creative strategies emerged that deliver defined products via catalytic or biocatalytic depolymerization in good yields. The purpose of this review is to provide insight into these novel approaches and the potential application of such emerging new structures for the synthesis of biobased polymers or pharmacologically active molecules. Existing strategies for functionalization or defunctionalization of lignin-based compounds are also summarized. Following the whole value chain from raw lignocellulose through depolymerization to application whenever possible, specific lignin-based compounds emerge that could be in the future considered as potential lignin-derived platform chemicals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization

              Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole % of Klason lignin for beech and 78 mole % for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions.
                Bookmark

                Author and article information

                Journal
                10.1021/acscentsci.8b00140
                http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html

                Comments

                Comment on this article