28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Faster phonological processing and right occipito-temporal coupling in deaf adults signal poor cochlear implant outcome

      Nature Communications

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          DRC: a dual route cascaded model of visual word recognition and reading aloud.

          This article describes the Dual Route Cascaded (DRC) model, a computational model of visual word recognition and reading aloud. The DRC is a computational realization of the dual-route theory of reading, and is the only computational model of reading that can perform the 2 tasks most commonly used to study reading: lexical decision and reading aloud. For both tasks, the authors show that a wide variety of variables that influence human latencies influence the DRC model's latencies in exactly the same way. The DRC model simulates a number of such effects that other computational models of reading do not, but there appear to be no effects that any other current computational model of reading can simulate but that the DRC model cannot. The authors conclude that the DRC model is the most successful of the existing computational models of reading.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensorimotor integration in speech processing: computational basis and neural organization.

            Sensorimotor integration is an active domain of speech research and is characterized by two main ideas, that the auditory system is critically involved in speech production and that the motor system is critically involved in speech perception. Despite the complementarity of these ideas, there is little crosstalk between these literatures. We propose an integrative model of the speech-related "dorsal stream" in which sensorimotor interaction primarily supports speech production, in the form of a state feedback control architecture. A critical component of this control system is forward sensory prediction, which affords a natural mechanism for limited motor influence on perception, as recent perceptual research has suggested. Evidence shows that this influence is modulatory but not necessary for speech perception. The neuroanatomy of the proposed circuit is discussed as well as some probable clinical correlates including conduction aphasia, stuttering, and aspects of schizophrenia. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies.

              Numerous studies concerned with cerebral structures underlying word reading have been published during the last decade. A few controversies, however, together with methodological or theoretical discrepancies between laboratories, still contribute to blurring the overall view of advances effected in neuroimaging. Carried out within the dual route of reading framework, the aim of this metanalysis was to provide an objective picture of these advances. To achieve this, we used an automated analysis method based on the inventory of activation peaks issued from word or pseudoword reading contrasts of 35 published neuroimaging studies. A first result of this metanalysis was that no cluster of activations has been found more recruited by word than pseudoword reading, implying that the first steps of word access may be common to word and word-like stimuli and would take place within a left occipitotemporal region (previously referred to as the Visual Word Form Area-VWFA) situated in the ventral route, at the junction between inferior temporal and fusiform gyri. The results also indicated the existence of brain regions predominantly involved in one of the two routes to access word. The graphophonological conversion seems indeed to rely on left lateralized brain structures such as superior temporal areas, supramarginal gyrus, and the opercular part of the inferior frontal gyrus, these last two regions reflecting a greater load in working memory during such an access. The lexicosemantic route is thought to arise from the coactivation of the VWFA and semantic areas. These semantic areas would encompass a basal inferior temporal area, the posterior part of the middle temporal gyrus, and the triangular part of inferior frontal gyrus. These results confirm the suitability of the dual route framework to account for activations observed in nonpathological subjects while they read.
                Bookmark

                Author and article information

                Journal
                10.1038/ncomms14872

                Comments

                Comment on this article