44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The building blocks of the full body ownership illusion

      ,
      Frontiers in Human Neuroscience
      Frontiers Media SA

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous work has reported that it is not difficult to give people the illusion of ownership over an artificial body, providing a powerful tool for the investigation of the neural and cognitive mechanisms underlying body perception and self consciousness. We present an experimental study that uses immersive virtual reality (IVR) focused on identifying the perceptual building blocks of this illusion. We systematically manipulated visuotactile and visual sensorimotor contingencies, visual perspective, and the appearance of the virtual body in order to assess their relative role and mutual interaction. Consistent results from subjective reports and physiological measures showed that a first person perspective over a fake humanoid body is essential for eliciting a body ownership illusion. We found that the illusion of ownership can be generated when the virtual body has a realistic skin tone and spatially substitutes the real body seen from a first person perspective. In this case there is no need for an additional contribution of congruent visuotactile or sensorimotor cues. Additionally, we found that the processing of incongruent perceptual cues can be modulated by the level of the illusion: when the illusion is strong, incongruent cues are not experienced as incorrect. Participants exposed to asynchronous visuotactile stimulation can experience the ownership illusion and perceive touch as originating from an object seen to contact the virtual body. Analogously, when the level of realism of the virtual body is not high enough and/or when there is no spatial overlap between the two bodies, then the contribution of congruent multisensory and/or sensorimotor cues is required for evoking the illusion. On the basis of these results and inspired by findings from neurophysiological recordings in the monkey, we propose a model that accounts for many of the results reported in the literature.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Moving a Rubber Hand that Feels Like Your Own: A Dissociation of Ownership and Agency

          During voluntary hand movement, we sense that we generate the movement and that the hand is a part of our body. These feelings of control over bodily actions, or the sense of agency, and the ownership of body parts are two fundamental aspects of the way we consciously experience our bodies. However, little is known about how these processes are functionally linked. Here, we introduce a version of the rubber hand illusion in which participants control the movements of the index finger of a model hand, which is in full view, by moving their own right index finger. We demonstrated that voluntary finger movements elicit a robust illusion of owning the rubber hand and that the senses of ownership and agency over the model hand can be dissociated. We systematically varied the relative timing of the finger movements (synchronous versus asynchronous), the mode of movement (active versus passive), and the position of the model hand (anatomically congruent versus incongruent positions). Importantly, asynchrony eliminated both ownership and agency, passive movements abolished the sense of agency but left ownership intact, and incongruent positioning of the model hand diminished ownership but did not eliminate agency. These findings provide evidence for a double dissociation of ownership and agency, suggesting that they represent distinct cognitive processes. Interestingly, we also noted that the sense of agency was stronger when the hand was perceived to be a part of the body, and only in this condition did we observe a significant correlation between the subjects’ ratings of agency and ownership. We discuss this in the context of possible differences between agency over owned body parts and agency over actions that involve interactions with external objects. In summary, the results obtained in this study using a simple moving rubber hand illusion paradigm extend previous findings on the experience of ownership and agency and shed new light on their relationship.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the other hand: dummy hands and peripersonal space.

            Where are my hands? The brain can answer this question using sensory information arising from vision, proprioception, or touch. Other sources of information about the position of our hands can be derived from multisensory interactions (or potential interactions) with our close environment, such as when we grasp or avoid objects. The pioneering study of multisensory representations of peripersonal space was published in Behavioural Brain Research almost 30 years ago [Rizzolatti G, Scandolara C, Matelli M, Gentilucci M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 1981;2:147-63]. More recently, neurophysiological, neuroimaging, neuropsychological, and behavioural studies have contributed a wealth of evidence concerning hand-centred representations of objects in peripersonal space. This evidence is examined here in detail. In particular, we focus on the use of artificial dummy hands as powerful instruments to manipulate the brain's representation of hand position, peripersonal space, and of hand ownership. We also review recent studies of the 'rubber hand illusion' and related phenomena, such as the visual capture of touch, and the recalibration of hand position sense, and discuss their findings in the light of research on peripersonal space. Finally, we propose a simple model that situates the 'rubber hand illusion' in the neurophysiological framework of multisensory hand-centred representations of space.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective.

              Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Frontiers in Human Neuroscience
                Front. Hum. Neurosci.
                Frontiers Media SA
                1662-5161
                2013
                2013
                : 7
                Article
                10.3389/fnhum.2013.00083
                484fbd94-dd7a-416a-9863-bd682b888d2d
                © 2013
                History

                Comments

                Comment on this article