20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Postural effects on interstitial fluid pressure in humans.

      Journal of Vascular Research
      Adult, Ankle, Extracellular Fluid, Female, Fluid Shifts, Homeostasis, Humans, Lymphatic System, physiology, Lymphography, Male, Micromanipulation, Middle Aged, Posture, Pressure, Skin Physiological Phenomena, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Direct assessment of the effect of postural changes on interstitial fluid pressure (IFP) in the human skin under physiological conditions is important for the understanding of mechanisms involved in diseases resulting in lower limb edema. Previous techniques to measure IFP had limitations of being invasive, and acute measurements were not possible. Here we describe the effect of postural changes on IFP in the skin of the foot using the minimally invasive servonulling technique. Measurements were performed in 12 healthy subjects. IFP (means +/- SD) was significantly higher in the sitting (5.1 +/- 2.9 mm Hg) than in the supine position (-0.3 +/- 3.6 mm Hg, p = 0.04) when measured in the sitting position first. The difference between the sitting and the supine position was not significant when measurements were taken in the supine position first [from 1.0 +/- 4.3 (supine) to 3.6 +/- 6.7 mm Hg (sitting), p = 0.46]. Spontaneous low-frequency pressure fluctuations occurred in 58% of the recordings during sitting, which was almost twice as frequent as in the supine position (33%; p = 0.001), while no effects on lymphatic capillary network extension were observed (p = 0.12). Using the servonulling micropressure system, postural effects on IFP can be directly assessed. IFP is higher in the sitting position, but differences are influenced by the time in the upright position.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Oncotic pressures opposing filtration across non-fenestrated rat microvessels.

          We hypothesized that ultrafiltrate crossing the luminal endothelial glycocalyx through infrequent discontinuities (gaps) in the tight junction (TJ) strand of endothelial clefts reduces albumin diffusive flux from tissue into the 'protected region' of the cleft on the luminal side of the TJ. Thus, the effective oncotic pressure difference (sigma black triangle down pi) opposing filtration is greater than that measured between lumen and interstitial fluid. To test this we measured sigma black triangle down pi across rat mesenteric microvessels perfused with albumin (50 mg ml(-1)) with and without interstitial albumin at the same concentration within a few micrometres of the endothelium as demonstrated by confocal microscopy. We found sigma black triangle down pi was near 70% of luminal oncotic pressure when the tissue concentration equalled that in the lumen. We determined size and frequency of TJ strand gaps in endothelial clefts using serial section electron microscopy. We found nine gaps in the reconstructed clefts having mean spacing of 3.59 microm and mean length of 315 nm. The mean depth of the TJ strand near gaps was 67 nm and the mean cleft path length from lumen to interstitium was 411 nm. With these parameters our three-dimensional hydrodynamic model confirmed that fluid velocity was high at gaps in the TJ strand so that even at relatively low hydraulic pressures the albumin concentration on the tissue side of the glycocalyx was significantly lower than in the interstitium. The results conform to the hypothesis that colloid osmotic forces opposing filtration across non-fenestrated continuous capillaries are developed across the endothelial glycocalyx and that the oncotic pressure of interstitial fluid does not directly determine fluid balance across microvascular endothelium.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pressure measurements in the mammalian microvasculature

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that the human cutaneous venoarteriolar response is not mediated by adrenergic mechanisms.

              The venoarteriolar response causes vasoconstriction to skin and muscle via local mechanisms secondary to venous congestion. The purpose of this project was to investigate whether this response occurs through alpha-adrenergic mechanisms. In supine individuals, forearm skin blood flow was monitored via laser-Doppler flowmetry over sites following local administration of terazosin (alpha(1)-antagonist), yohimbine (alpha(2)-antagonist), phentolamine (non-selective alpha-antagonist) and bretylium tosylate (inhibits neurotransmission of adrenergic nerves) via intradermal microdialysis or intradermal injection. In addition, skin blood flow was monitored over an area of forearm skin that was locally anaesthetized via application of EMLA (2.5 % lidocaine (lignocaine) and 2.5 % prilocaine) cream. Skin blood flow was also monitored over adjacent sites that received the vehicle for the specified drug. Each trial was performed on a minimum of seven subjects and on separate days. The venoarteriolar response was engaged by lowering the subject's arm from heart level such that the sites of skin blood flow measurement were 34 +/- 1 cm below the heart. The arm remained in this position for 2 min. Selective and non-selective alpha-adrenoceptor antagonism and presynaptic inhibition of adrenergic neurotransmission did not abolish the venoarteriolar response. However, local anaesthesia blocked the venoarteriolar response without altering alpha-adrenergic mediated vasoconstriction. These data suggest that the venoarteriolar response does not occur through adrenergic mechanisms as previously reported. Rather, the venoarteriolar response may due to myogenic mechanisms associated with changes in vascular pressure or is mediated by a non-adrenergic, but neurally mediated, local mechanism.
                Bookmark

                Author and article information

                Comments

                Comment on this article