27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency.

      Hormone research
      Animals, Citric Acid Cycle, genetics, Fumarate Hydratase, Genetic Predisposition to Disease, Humans, Mitochondria, Mutation, Paraganglioma, congenital, Pheochromocytoma, Succinate Dehydrogenase, deficiency

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial complex II, or succinate dehydrogenase, is a key enzymatic complex involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation as part of the mitochondrial respiratory chain. Germline succinate dehydrogenase subunit A (SDHA) mutations have been reported in a few patients with a classical mitochondrial neurodegenerative disease. Mutations in the genes encoding the three other succinate dehydrogenase subunits (SDHB, SDHC and SDHD) have been identified in patients affected by familial or 'apparently sporadic' paraganglioma and/or pheochromocytoma, an autosomal inherited cancer-susceptibility syndrome. These discoveries have dramatically changed the work-up and genetic counseling of patients and families with paragangliomas and/or pheochromocytomas. The subsequent identification of germline mutations in the gene encoding fumarase--another TCA cycle enzyme--in a new hereditary form of susceptibility to renal, uterine and cutaneous tumors has highlighted the potential role of the TCA cycle and, more generally, of the mitochondria in cancer. 2005 S. Karger AG, Basel

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found

          Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma.

          Hereditary paraganglioma (PGL) is characterized by the development of benign, vascularized tumors in the head and neck. The most common tumor site is the carotid body (CB), a chemoreceptive organ that senses oxygen levels in the blood. Analysis of families carrying the PGL1 gene, described here, revealed germ line mutations in the SDHD gene on chromosome 11q23. SDHD encodes a mitochondrial respiratory chain protein-the small subunit of cytochrome b in succinate-ubiquinone oxidoreductase (cybS). In contrast to expectations based on the inheritance pattern of PGL, the SDHD gene showed no evidence of imprinting. These findings indicate that mitochondria play an important role in the pathogenesis of certain tumors and that cybS plays a role in normal CB physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            von Hippel-Lindau disease.

            von Hippel-Lindau disease is a heritable multisystem cancer syndrome that is associated with a germline mutation of the VHL tumour suppressor gene on the short arm of chromosome 3. This disorder is not rare (about one in 36000 livebirths) and is inherited as a highly penetrant autosomal dominant trait (ie, with a high individual risk of disease). Affected individuals are at risk of developing various benign and malignant tumours of the central nervous system, kidneys, adrenal glands, pancreas, and reproductive adnexal organs. Because of the complexities associated with management of the various types of tumours in this disease, treatment is multidisciplinary. We present an overview of the clinical aspects, management, and treatment options for von Hippel-Lindau disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Germ-line mutations in nonsyndromic pheochromocytoma.

              The group of susceptibility genes for pheochromocytoma that included the proto-oncogene RET (associated with multiple endocrine neoplasia type 2 [MEN-2]) and the tumor-suppressor gene VHL (associated with von Hippel-Lindau disease) now also encompasses the newly identified genes for succinate dehydrogenase subunit D (SDHD) and succinate dehydrogenase subunit B (SDHB), which predispose carriers to pheochromocytomas and glomus tumors. We used molecular tools to classify a large cohort of patients with pheochromocytoma with respect to the presence or absence of mutations of one of these four genes and to investigate the relevance of genetic analyses to clinical practice. Peripheral blood from unrelated, consenting registry patients with pheochromocytoma was tested for mutations of RET, VHL, SDHD, and SDHB. Clinical data at first presentation and follow-up were evaluated. Among 271 patients who presented with nonsyndromic pheochromocytoma and without a family history of the disease, 66 (24 percent) were found to have mutations (mean age, 25 years; 32 men and 34 women). Of these 66, 30 had mutations of VHL, 13 of RET, 11 of SDHD, and 12 of SDHB. Younger age, multifocal tumors, and extraadrenal tumors were significantly associated with the presence of a mutation. However, among the 66 patients who were positive for mutations, only 21 had multifocal pheochromocytoma. Twenty-three (35 percent) presented after the age of 30 years, and 17 (8 percent) after the age of 40. Sixty-one (92 percent) of the patients with mutations were identified solely by molecular testing of VHL, RET, SDHD, and SDHB; these patients had no associated signs and symptoms at presentation. Almost one fourth of patients with apparently sporadic pheochromocytoma may be carriers of mutations; routine analysis for mutations of RET, VHL, SDHD, and SDHB is indicated to identify pheochromocytoma-associated syndromes that would otherwise be missed.
                Bookmark

                Author and article information

                Comments

                Comment on this article