11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modality-independent recruitment of inferior frontal cortex during speech processing in human infants

      ,
      Developmental Cognitive Neuroscience
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite increasing interest in the development of audiovisual speech perception in infancy, the underlying mechanisms and neural processes are still only poorly understood. In addition to regions in temporal cortex associated with speech processing and multimodal integration, such as superior temporal sulcus, left inferior frontal cortex (IFC) has been suggested to be critically involved in mapping information from different modalities during speech perception. To further illuminate the role of IFC during infant language learning and speech perception, the current study examined the processing of auditory, visual and audiovisual speech in 6-month-old infants using functional near-infrared spectroscopy (fNIRS). Our results revealed that infants recruit speech-sensitive regions in frontal cortex including IFC regardless of whether they processed unimodal or multimodal speech. We argue that IFC may play an important role in associating multimodal speech information during the early steps of language learning.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Towards a neural basis of auditory sentence processing.

            Functional dissociations within the neural basis of auditory sentence processing are difficult to specify because phonological, syntactic and semantic information are all involved when sentences are perceived. In this review I argue that sentence processing is supported by a temporo-frontal network. Within this network, temporal regions subserve aspects of identification and frontal regions the building of syntactic and semantic relations. Temporal analyses of brain activation within this network support syntax-first models because they reveal that building of syntactic structure precedes semantic processes and that these interact only during a later stage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Active perception: sensorimotor circuits as a cortical basis for language.

              Action and perception are functionally linked in the brain, but a hotly debated question is whether perception and comprehension of stimuli depend on motor circuits. Brain language mechanisms are ideal for addressing this question. Neuroimaging investigations have found specific motor activations when subjects understand speech sounds, word meanings and sentence structures. Moreover, studies involving transcranial magnetic stimulation and patients with lesions affecting inferior frontal regions of the brain have shown contributions of motor circuits to the comprehension of phonemes, semantic categories and grammar. These data show that language comprehension benefits from frontocentral action systems, indicating that action and perception circuits are interdependent.
                Bookmark

                Author and article information

                Journal
                Developmental Cognitive Neuroscience
                Developmental Cognitive Neuroscience
                Elsevier BV
                18789293
                November 2018
                November 2018
                : 34
                : 130-138
                Article
                10.1016/j.dcn.2018.10.002
                116dc80f-ba4a-4591-a7d1-92128c02c05f
                © 2018

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article