65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway

      , ,
      Neuron
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Caenorhabditis elegans modulates its locomotory rate in response to its food, bacteria, in two ways. First, well-fed wild-type animals move more slowly in the presence of bacteria than in the absence of bacteria. This basal slowing response is mediated by a dopamine-containing neural circuit that senses a mechanical attribute of bacteria and may be an adaptive mechanism that increases the amount of time animals spend in the presence of food. Second, food-deprived wild-type animals, when transferred to bacteria, display a dramatically enhanced slowing response that ensures that the animals do not leave their newly encountered source of food. This experience-dependent response is mediated by serotonergic neurotransmission and is potentiated by fluoxetine (Prozac). The basal and enhanced slowing responses are distinct and separable neuromodulatory components of a genetically tractable paradigm of behavioral plasticity.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Mutant sensory cilia in the nematode Caenorhabditis elegans.

          Eight classes of chemosensory neurons in C. elegans fill with fluorescein when living animals are placed in a dye solution. Fluorescein enters the neurons through their exposed sensory cilia. Mutations in 14 genes prevent dye uptake and disrupt chemosensory behaviors. Each of these genes affects the ultrastructure of the chemosensory cilia or their accessory cells. In each case, the cilia are shorter or less exposed than normal, suggesting that dye contact is the principal factor under selection. Ten genes affect many or all of the sensory cilia in the head. The daf-19 (m86) mutation eliminates all cilia, leaving only occasional centrioles in the dendrites. The cilia in che-13 (e1805), osm-1 (p808), osm-5 (p813), and osm-6 (p811) mutants have normal transition zones and severely shortened axonemes. Doublet-microtubules, attached to the membrane by Y links, assemble ectopically proximal to the cilia in these mutants. The amphid cilia in che-11 (e1810) are irregular in diameter and contain dark ground material in the middle of the axonemes. Certain mechanocilia are also affected. The amphid cilia in che-10 (e1809) apparently degenerate, leaving dendrites with bulb-shaped endings filled with dark ground material. The mechanocilia lack striated rootlets. Cilia defects have also been found in che-2, che-3, and daf-10 mutants. The osm-3 (p802) mutation specifically eliminates the distal segment of the amphid cilia. Mutations in three genes affect sensillar support cells. The che-12 (e1812) mutation eliminates matrix material normally secreted by the amphid sheath cell. The che-14 (e1960) mutation disrupts the joining of the amphid sheath and socket cells to form the receptor channel. A similar defect has been observed in daf-6 mutants. Four additional genes affect specific classes of ciliated sensory neurons. The mec-1 and mec-8 (e398) mutations disrupt the fasciculation of the amphid cilia. The cat-6 (e1861) mutation disrupts the tubular bodies of the CEP mechanocilia. A cryophilic thermotaxis mutant, ttx-1 (p767), lacks fingers on the AFD dendrite, suggesting this neuron is thermosensory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The spectrum of behaviors influenced by serotonin.

            I Lucki (1998)
            The diverse array of behavioral effects of serotonin form the basis for understanding its potential role as an etiological marker in psychiatric disorders and for the successful pharmacologic intervention of drugs regulating serotonin neurotransmission in behavior. General theories of the behavioral functions of serotonin have implicated serotonin as a general inhibitor of behavioral responding and in modulating motor behavior. The ability of serotonin to regulate behavioral satiety and macronutrient selection provides the basis for pharmacologic treatment of obesity and eating disorders. The role of serotonin in behavioral suppression may be important in social behavior involving aggression and anxiety. The role of serotonin in neuroendocrine regulation provides a basis for understanding serotonin dysregulation in depression. Animal behavior tests are being used to better understand the neural substrates underlying the behavioral effects of antidepressant drugs and to address important issues in clinical treatment. The integration of information between basic and clinical studies provides the basis for future development of more sophisticated pharmacologic treatments of psychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant.

              The functions of serotonin have been assigned through serotonin-receptor-specific drugs and mutants; however, because a constellation of receptors remains when a single receptor subtype is inhibited, the coordinate responses to modulation of serotonin levels may be missed. Here we report the analysis of behavioural and neuroendocrine defects caused by a complete lack of serotonin signalling. Analysis of the C. elegans genome sequence showed that there is a single tryptophan hydroxylase gene (tph-1)-the key enzyme for serotonin biosynthesis. Animals bearing a tph-1 deletion mutation do not synthesize serotonin but are fully viable. The tph-1 mutant shows abnormalities in behaviour and metabolism that are normally coupled with the sensation and ingestion of food: rates of feeding and egg laying are decreased; large amounts of fat are stored; reproductive lifespan is increased; and some animals arrest at the metabolically inactive dauer stage. This metabolic dysregulation is, in part, due to downregulation of transforming growth factor-beta and insulin-like neuroendocrine signals. The action of the C. elegans serotonergic system in metabolic control is similar to mammalian serotonergic input to metabolism and obesity.
                Bookmark

                Author and article information

                Journal
                Neuron
                Neuron
                Elsevier BV
                08966273
                June 2000
                June 2000
                : 26
                : 3
                : 619-631
                Article
                10.1016/S0896-6273(00)81199-X
                39af5897-4132-4400-b2b7-5e4d6f1cd407
                © 2000

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article