78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Cannabis Seizures in NSW, Australia: Cannabis Potency and Cannabinoid Profile

      PLoS ONE
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.

          Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potency trends of Δ9-THC and other cannabinoids in confiscated cannabis preparations from 1993 to 2008.

            The University of Mississippi has a contract with the National Institute on Drug Abuse (NIDA) to carry out a variety of research activities dealing with cannabis, including the Potency Monitoring (PM) program, which provides analytical potency data on cannabis preparations confiscated in the United States. This report provides data on 46,211 samples seized and analyzed by gas chromatography-flame ionization detection (GC-FID) during 1993-2008. The data showed an upward trend in the mean Δ(9)-tetrahydrocannabinol (Δ(9)-THC) content of all confiscated cannabis preparations, which increased from 3.4% in 1993 to 8.8% in 2008. Hashish potencies did not increase consistently during this period; however, the mean yearly potency varied from 2.5-9.2% (1993-2003) to 12.0-29.3% (2004-2008). Hash oil potencies also varied considerably during this period (16.8 ± 16.3%). The increase in cannabis preparation potency is mainly due to the increase in the potency of nondomestic versus domestic samples. © 2010 American Academy of Forensic Sciences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study: naturalistic study [corrected].

              The two main constituents of cannabis, cannabidiol and Δ(9)-tetrahydrocannabinol (THC), have opposing effects both pharmacologically and behaviourally when administered in the laboratory. Street cannabis is known to contain varying levels of each cannabinoid. To study how the varying levels of cannabidiol and THC have an impact on the acute effects of the drug in naturalistic settings. Cannabis users (n = 134) were tested 7 days apart on measures of memory and psychotomimetic symptoms, once while they were drug free and once while acutely intoxicated by their own chosen smoked cannabis. Using an unprecedented methodology, a sample of cannabis (as well as saliva) was collected from each user and analysed for levels of cannabinoids. On the basis of highest and lowest cannabidiol content of cannabis, two groups of individuals were directly compared. Groups did not differ in the THC content of the cannabis they smoked. Unlike the marked impairment in prose recall of individuals who smoked cannabis low in cannabidiol, participants smoking cannabis high in cannabidiol showed no memory impairment. Cannabidiol content did not affect psychotomimetic symptoms, which were elevated in both groups when intoxicated. The antagonistic effects of cannabidiol at the CB(1) receptor are probably responsible for its profile in smoked cannabis, attenuating the memory-impairing effects of THC. In terms of harm reduction, users should be made aware of the higher risk of memory impairment associated with smoking low-cannabidiol strains of cannabis like 'skunk' and encouraged to use strains containing higher levels of cannabidiol.
                Bookmark

                Author and article information

                Journal
                10.1371/journal.pone.0070052
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article