47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress.

      Translational Psychiatry
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Major depression is a prevalent emotion disorder. Chronic stressful life in genetically susceptible individuals is presumably a major etiology that leads to neuron and synapse atrophy in the limbic system. Molecular mechanisms underlying the pathological changes remain elusive. Mice were treated by chronic unpredictable mild stress (CUMS) until they demonstrated depression-like behavior. GABA release in the medial prefrontal cortex was evaluated by cell electrophysiology and imaging. Molecular profiles related to GABA synthesis and uptake were investigated by the high-throughput sequencings of microRNAs and mRNAs as well as western blot analysis in this cortical area. In CUMS-induced depression mice, there appear the decreases in the innervation and function of GABAergic axons and in the levels of mRNAs and proteins of glutamate decarboxylase-67, vesicular GABA transporter and GABA transporter-3. miRNA-15b-5p, miRNA-144-3p, miRNA-582-5p and miRNA-879-5p that directly downregulate such mRNAs increase in this cortex. Our results suggest that chronic mild stress impairs GABA release and uptake by upregulating miRNAs and downregulating mRNAs and proteins, which may constitute the subcellular and molecular mechanisms for the lowered GABA tone in major depression.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex.

          Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic dysfunction in depression: potential therapeutic targets.

            Basic and clinical studies demonstrate that depression is associated with reduced size of brain regions that regulate mood and cognition, including the prefrontal cortex and the hippocampus, and decreased neuronal synapses in these areas. Antidepressants can block or reverse these neuronal deficits, although typical antidepressants have limited efficacy and delayed response times of weeks to months. A notable recent discovery shows that ketamine, a N-methyl-D-aspartate receptor antagonist, produces rapid (within hours) antidepressant responses in patients who are resistant to typical antidepressants. Basic studies show that ketamine rapidly induces synaptogenesis and reverses the synaptic deficits caused by chronic stress. These findings highlight the central importance of homeostatic control of mood circuit connections and form the basis of a synaptogenic hypothesis of depression and treatment response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Behavioural despair in rats: a new model sensitive to antidepressant treatments.

              Rats when forced to swim in a cylinder from which they cannot escape will, after an initial period of vigorous activity, adopt a characteristic immobile posture which can be readily identified. Immobility was reduced by various clinically effective antidepressant drugs at doses which otherwise decreased spontaneous motor activity in an open field. Antidepressants could thus be distinguished from psychostimulants which decreased immobility at doses which increased general activity. Anxiolytic compounds did not affect immobility whereas major tranquilisers enhanced it. Immobility was also reduced by electroconvulsive shock, REM sleep deprivation and "enrichment" of the environment. It was concluded that immobility reflects a state of lowered mood in the rat which is selectively sensitive to antidepressant treatments. Positive findings with atypical antidepressant drugs such as iprindole and mianserin suggest that the method may be capable of discovering new antidepressants hitherto undetectable with classical pharmacological tests.
                Bookmark

                Author and article information

                Journal
                27701406
                10.1038/tp.2016.181

                Comments

                Comment on this article