51
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Temporal increases in urinary carboxymethyllysine correlate with albuminuria development in diabetes.

      1 ,
      American journal of nephrology
      S. Karger AG

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advanced glycation end products (AGEs) mediate progressive tissue damage in diabetic nephropathy; however, their utility as a noninvasive reliable biomarker of progressive diabetic nephropathy remains to be determined. In this study, we investigated the temporal accumulation of the AGE carboxymethyllysine (CML) at various sites in a model of experimental diabetic nephropathy.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical review: The role of advanced glycation end products in progression and complications of diabetes.

          Diabetic complications appear to be multifactorial in origin, but in particular, the biochemical process of advanced glycation, which is accelerated in diabetes as a result of chronic hyperglycemia and increased oxidative stress, has been postulated to play a central role in these disorders. Advanced glycation involves the generation of a heterogenous group of chemical moieties known as advanced glycated end products (AGEs), this reaction occurring as a result of a nonenzymatic reaction with glucose interacting with proteins, lipids, and nucleic acids, and involves key intermediates such as methylglyoxal. In this review we report on how these AGEs may exert deleterious effects in diabetes, as well as address current strategies to interrupt the formation or action of AGEs. First, AGEs act directly to induce cross-linking of long-lived proteins such as collagen to promote vascular stiffness, and, thus, alter vascular structure and function. Second, AGEs can interact with certain receptors, such as the receptor for AGE, to induce intracellular signaling that leads to enhanced oxidative stress and elaboration of key proinflammatory and prosclerotic cytokines. Over the last decade, a large number of preclinical studies have been performed, targeting the formation and degradation of AGEs, as well as the interaction of these AGEs with receptors such as the receptor for AGE. It is hoped that over the next few years, some of these promising therapies will be fully evaluated in the clinical context with the ultimate aim to reduce the major economical and medical burden of diabetes, its vascular complications.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes.

              Damaged mitochondria generate an excess of superoxide, which may mediate tissue injury in diabetes. We hypothesized that in diabetic nephropathy, advanced glycation end-products (AGEs) lead to increases in cytosolic reactive oxygen species (ROS), which facilitate the production of mitochondrial superoxide. In normoglycemic conditions, exposure of primary renal cells to AGEs, transient overexpression of the receptor for AGEs (RAGE) with an adenoviral vector, and infusion of AGEs to healthy rodents each induced renal cytosolic oxidative stress, which led to mitochondrial permeability transition and deficiency of mitochondrial complex I. Because of a lack of glucose-derived NADH, which is the substrate for complex I, these changes did not lead to excess production of mitochondrial superoxide; however, when we performed these experiments in hyperglycemic conditions in vitro or in diabetic rats, we observed significant generation of mitochondrial superoxide at the level of complex I, fueled by a sustained supply of NADH. Pharmacologic inhibition of AGE-RAGE-induced mitochondrial permeability transition in vitro abrogated production of mitochondrial superoxide; we observed a similar effect in vivo after inhibiting cytosolic ROS production with apocynin or lowering AGEs with alagebrium. Furthermore, RAGE deficiency prevented diabetes-induced increases in renal mitochondrial superoxide and renal cortical apoptosis in mice. Taken together, these studies suggest that AGE-RAGE-induced cytosolic ROS production facilitates mitochondrial superoxide production in hyperglycemic environments, providing further evidence of a role for the advanced glycation pathway in the development and progression of diabetic nephropathy.
                Bookmark

                Author and article information

                Journal
                Am. J. Nephrol.
                American journal of nephrology
                S. Karger AG
                1421-9670
                0250-8095
                2011
                : 34
                : 1
                Affiliations
                [1 ] Glycation and Diabetes Complications Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia. Melinda.Coughlan@bakeridi.edu.au
                Article
                000328581
                10.1159/000328581
                21654162
                6488ff8f-f735-48d1-8584-26b679963e6b
                History

                Comments

                Comment on this article