33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain-dead donors. In the present study, two-dimensional gel electrophoresis and MALDI-TOF MS-based comparative proteomic analysis were conducted to profile the differentially-expressed proteins between brain death and the control group renal tissues. A total of 40 age- and sex-matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two-dimensional gel electrophoresis, >2-fold alterations were identified by MALDI-TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3-N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b-c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre-mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V-type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin-3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time-dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain-dead donors.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Global protein function prediction from protein-protein interaction networks.

          Determining protein function is one of the most challenging problems of the post-genomic era. The availability of entire genome sequences and of high-throughput capabilities to determine gene coexpression patterns has shifted the research focus from the study of single proteins or small complexes to that of the entire proteome. In this context, the search for reliable methods for assigning protein function is of primary importance. There are various approaches available for deducing the function of proteins of unknown function using information derived from sequence similarity or clustering patterns of co-regulated genes, phylogenetic profiles, protein-protein interactions (refs. 5-8 and Samanta, M.P. and Liang, S., unpublished data), and protein complexes. Here we propose the assignment of proteins to functional classes on the basis of their network of physical interactions as determined by minimizing the number of protein interactions among different functional categories. Function assignment is proteome-wide and is determined by the global connectivity pattern of the protein network. The approach results in multiple functional assignments, a consequence of the existence of multiple equivalent solutions. We apply the method to analyze the yeast Saccharomyces cerevisiae protein-protein interaction network. The robustness of the approach is tested in a system containing a high percentage of unclassified proteins and also in cases of deletion and insertion of specific protein interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin.

            MicroRNAs (miRNAs) may function as oncogenes or tumor suppressors. Here, we show that miR-27a is up-regulated in human gastric adenocarcinoma. Suppression of miR-27a inhibits gastric cancer cell growth. Subsequently, prohibitin is identified as a potential miR-27a target, combining bioinformatics and microarray analysis. EGFP report experiment also confirms that the 3' untranslated region (3'UTR) of prohibitin carries the directly binding site of miR-27a. After knockdown of miR-27a in gastric cancer cells, mRNA level and protein level of prohibitin are both elevated. Down-regulation of prohibitin by miR-27a may explain why suppression of miR-27a can inhibit gastric cancer cell growth, further supporting that miR-27a functions as an oncogene.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Brain death and its influence on donor organ quality and outcome after transplantation.

                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                January 2017
                19 May 2017
                19 May 2017
                : 16
                : 1
                : 215-223
                Affiliations
                [1 ]Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
                [2 ]Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
                Author notes
                Correspondence to: Dr Qifa Ye, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, P.R. China, E-mail: yqf_china@ 123456163.com
                [*]

                Contributed equally

                Article
                mmr-16-01-0215
                10.3892/mmr.2017.6609
                5482134
                28534953
                817a82be-6063-4626-ae02-e17018d2c77a
                Copyright: © Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 22 January 2016
                : 09 February 2017
                Categories
                Articles

                proteomics,brain death,kidney,prohibitin
                proteomics, brain death, kidney, prohibitin

                Comments

                Comment on this article