15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A prevascularized subcutaneous device-less site for islet and cellular transplantation.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transplantation of donor-derived islets into the liver is a successful cellular replacement therapy for individuals with diabetes. However, the hepatic vasculature is not an optimal transplant site for several reasons, including graft attrition and the inability to retrieve or image the islets. Here we describe islet transplantation into a prevascularized, subcutaneous site created by temporary placement of a medically approved vascular access catheter. In mice with streptozotocin (STZ)-induced diabetes, transplantation of ∼500 syngeneic islets into the resulting 'device-less' space reversed diabetes in 91% of mice and maintained normoglycemia for >100 days. The approach was also effective in mice with pre-existing diabetes, in another mouse strain that mounts a more vigorous inflammatory response, and across an allogeneic barrier. These results demonstrate that transient priming of a subcutaneous site supports diabetes-reversing islet transplantation in mouse models without the need for a permanent cell-encapsulation device.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Five-year follow-up after clinical islet transplantation.

          Islet transplantation can restore endogenous beta-cell function to subjects with type 1 diabetes. Sixty-five patients received an islet transplant in Edmonton as of 1 November 2004. Their mean age was 42.9 +/- 1.2 years, their mean duration of diabetes was 27.1 +/- 1.3 years, and 57% were women. The main indication was problematic hypoglycemia. Forty-four patients completed the islet transplant as defined by insulin independence, and three further patients received >16,000 islet equivalents (IE)/kg but remained on insulin and are deemed complete. Those who became insulin independent received a total of 799,912 +/- 30,220 IE (11,910 +/- 469 IE/kg). Five subjects became insulin independent after one transplant. Fifty-two patients had two transplants, and 11 subjects had three transplants. In the completed patients, 5-year follow-up reveals that the majority ( approximately 80%) have C-peptide present post-islet transplant, but only a minority ( approximately 10%) maintain insulin independence. The median duration of insulin independence was 15 months (interquartile range 6.2-25.5). The HbA(1c) (A1C) level was well controlled in those off insulin (6.4% [6.1-6.7]) and in those back on insulin but C-peptide positive (6.7% [5.9-7.5]) and higher in those who lost all graft function (9.0% [6.7-9.3]) (P < 0.05). Those who resumed insulin therapy did not appear more insulin resistant compared with those off insulin and required half their pretransplant daily dose of insulin but had a lower increment of C-peptide to a standard meal challenge (0.44 +/- 0.06 vs. 0.76 +/- 0.06 nmol/l, P < 0.001). The Hypoglycemic score and lability index both improved significantly posttransplant. In the 128 procedures performed, bleeding occurred in 15 and branch portal vein thrombosis in 5 subjects. Complications of immunosuppressive therapy included mouth ulcers, diarrhea, anemia, and ovarian cysts. Of the 47 completed patients, 4 required retinal laser photocoagulation or vitrectomy and 5 patients with microalbuminuria developed macroproteinuria. The need for multiple antihypertensive medications increased from 6% pretransplant to 42% posttransplant, while the use of statin therapy increased from 23 to 83% posttransplant. There was no change in the neurothesiometer scores pre- versus posttransplant. In conclusion, islet transplantation can relieve glucose instability and problems with hypoglycemia. C-peptide secretion was maintained in the majority of subjects for up to 5 years, although most reverted to using some insulin. The results, though promising, still point to the need for further progress in the availability of transplantable islets, improving islet engraftment, preserving islet function, and reducing toxic immunosuppression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages in inflammation.

            The inflammatory process is usually tightly regulated, involving both signals that initiate and maintain inflammation and signals that shut the process down. An imbalance between the two signals leaves inflammation unchecked, resulting in cellular and tissue damage. Macrophages are a major component of the mononuclear phagocyte system that consists of closely related cells of bone marrow origin, including blood monocytes, and tissue macrophages. From the blood, monocytes migrate into various tissues and transform macrophages. In inflammation, macrophages have three major function; antigen presentation, phagocytosis, and immunomodulation through production of various cytokines and growth factors. Macrophages play a critical role in the initiation, maintenance, and resolution of inflammation. They are activated and deactivated in the inflammatory process. Activation signals include cytokines (interferon gamma, granulocyte-monocyte colony stimulating factor, and tumor necrosis factor alpha), bacterial lipopolysaccharide, extracellular matrix proteins, and other chemical mediators. Inhibition of inflammation by removal or deactivation of mediators and inflammatory effector cells permits the host to repair damages tissues. Activated macrophages are deactivated by anti-inflammatory cytokines (interleukin 10 and transforming growth factor beta) and cytokine antagonists that are mainly produced by macrophages. Macrophages participate in the autoregulatory loop in the inflammatory process. Because macrophages produce a wide range of biologically active molecules participated in both beneficial and detrimental outcomes in inflammation, therapeutic interventions targeted macrophages and their products may open new avenues for controlling inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis.

              The biological response to implanted biomaterials in mammals is a complex series of events that involves many biochemical pathways. Shortly after implantation, fibrinogen and other proteins bind to the device surface, a process known as biofouling. Macrophages then bind to receptors on the proteins, join into multinucleated giant cells, and release transforming growth factor beta and other inflammatory cytokines. In response to these signals, quiescent fibroblasts are transformed into myofibroblasts, which synthesize procollagen via activation of Smad mediators. The procollagen becomes crosslinked after secretion into the extracellular space. Mature crosslinked collagen and other extracellular matrix proteins gradually contribute to formation of a hypocellular dense fibrous capsule that becomes impermeable or hypopermeable to many compounds. Porous substrates and angiogenic growth factors can stimulate formation of microvessels, which to some extent can maintain analyte delivery to implanted sensors. However, stimulation by vascular endothelial growth factor alone may lead to formation of leaky, thin-walled, immature vessels. Other growth factors are most probably needed to act upon these immature structures to create more robust vessels.During implantation of foreign bodies, the foreign-body response is difficult to overcome, and thousands of biomaterials have been tested. Biomimicry (i.e., creating membranes whose chemical structure mimics natural cellular compounds) may diminish the response, but as of this writing, it has not been possible to create a stealth material that circumvents the ability of the mammalian surveillance systems to distinguish foreign from self.
                Bookmark

                Author and article information

                Journal
                Nat. Biotechnol.
                Nature biotechnology
                1546-1696
                1087-0156
                May 2015
                : 33
                : 5
                Affiliations
                [1 ] Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
                [2 ] 1] Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada. [2] Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
                Article
                nbt.3211
                10.1038/nbt.3211
                25893782
                bd54bf75-ebea-4993-9ddc-c972e5204443
                History

                Comments

                Comment on this article