67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral Oncology: Molecular Biology and Pathogenesis

      Journal of clinical medicine
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references356

          • Record: found
          • Abstract: found
          • Article: not found

          Human Papillomavirus Types in Head and Neck Squamous Cell Carcinomas Worldwide: A Systematic Review

          A. Kreimer (2005)
          Mucosal human papillomaviruses (HPV) are the cause of cervical cancer and likely a subset of head and neck squamous cell carcinomas (HNSCC), yet the global prevalence and type distribution of HPV in HNSCC remains unclear. We systematically reviewed published studies of HNSCC biopsies that employed PCR-based methods to detect and genotype HPV to describe the prevalence and type distribution of HPV by anatomic cancer site. Geographic location and study size were investigated as possible sources of variability. In the 5,046 HNSCC cancer specimens from 60 studies, the overall HPV prevalence was 25.9% [95% confidence interval (95% CI), 24.7-27.2]. HPV prevalence was significantly higher in oropharyngeal SCCs (35.6% of 969; 95% CI, 32.6-38.7) than oral SCCs (23.5% of 2,642; 95% CI, 21.9-25.1) or laryngeal SCCs (24.0% of 1,435; 95% CI, 21.8-26.3). HPV16 accounted for a larger majority of HPV-positive oropharyngeal SCCs (86.7%; 95% CI, 82.6-90.1) compared with HPV-positive oral SCCs (68.2%; 95% CI, 64.4-71.9) and laryngeal SCCs (69.2%; 95% CI, 64.0-74.0). Conversely, HPV18 was rare in HPV-positive oropharyngeal SCCs (2.8%; 95% CI, 1.3-5.3) compared with other head and neck sites [34.1% (95% CI, 30.4-38.0) of oral SCCs and 17.0% (95% CI, 13.0-21.6) of laryngeal SCCs]. Aside from HPV16 and HPV18, other oncogenic HPVs were rarely detected in HNSCC. Tumor site-specific HPV prevalence was higher among studies from North America compared with Europe and Asia. The high HPV16 prevalence and the lack of HPV18 in oropharyngeal compared with other HNSCCs may point to specific virus-tissue interactions. Small sample size and publication bias complicate the assessment of the prevalence of HPV in head and neck sites beyond the oropharynx.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human papillomavirus and cervical cancer.

            Cervical cancer is caused by human papillomavirus infection. Most human papillomavirus infection is harmless and clears spontaneously but persistent infection with high-risk human papillomavirus (especially type 16) can cause cancer of the cervix, vulva, vagina, anus, penis, and oropharynx. The virus exclusively infects epithelium and produces new viral particles only in fully mature epithelial cells. Human papillomavirus disrupts normal cell-cycle control, promoting uncontrolled cell division and the accumulation of genetic damage. Two effective prophylactic vaccines composed of human papillomavirus type 16 and 18, and human papillomavirus type 16, 18, 6, and 11 virus-like particles have been introduced in many developed countries as a primary prevention strategy. Human papillomavirus testing is clinically valuable for secondary prevention in triaging low-grade cytology and as a test of cure after treatment. More sensitive than cytology, primary screening by human papillomavirus testing could enable screening intervals to be extended. If these prevention strategies can be implemented in developing countries, many thousands of lives could be saved. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer.

              DNA damage is a key factor both in the evolution and treatment of cancer. Genomic instability is a common feature of cancer cells, fuelling accumulation of oncogenic mutations, while radiation and diverse genotoxic agents remain important, if imperfect, therapeutic modalities. Cellular responses to DNA damage are coordinated primarily by two distinct kinase signaling cascades, the ATM-Chk2 and ATR-Chk1 pathways, which are activated by DNA double-strand breaks (DSBs) and single-stranded DNA respectively. Historically, these pathways were thought to act in parallel with overlapping functions; however, more recently it has become apparent that their relationship is more complex. In response to DSBs, ATM is required both for ATR-Chk1 activation and to initiate DNA repair via homologous recombination (HRR) by promoting formation of single-stranded DNA at sites of damage through nucleolytic resection. Interestingly, cells and organisms survive with mutations in ATM or other components required for HRR, such as BRCA1 and BRCA2, but at the cost of genomic instability and cancer predisposition. By contrast, the ATR-Chk1 pathway is the principal direct effector of the DNA damage and replication checkpoints and, as such, is essential for the survival of many, although not all, cell types. Remarkably, deficiency for HRR in BRCA1- and BRCA2-deficient tumors confers sensitivity to cisplatin and inhibitors of poly(ADP-ribose) polymerase (PARP), an enzyme required for repair of endogenous DNA damage. In addition, suppressing DNA damage and replication checkpoint responses by inhibiting Chk1 can enhance tumor cell killing by diverse genotoxic agents. Here, we review current understanding of the organization and functions of the ATM-Chk2 and ATR-Chk1 pathways and the prospects for targeting DNA damage signaling processes for therapeutic purposes. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                10.3390/jcm6120111
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article