28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Shattuck lecture--medical and societal consequences of the Human Genome Project.

      The New England journal of medicine
      Confidentiality, legislation & jurisprudence, Education, Professional, Genetic Counseling, Genetic Diseases, Inborn, diagnosis, prevention & control, therapy, Genetic Testing, trends, Genetic Therapy, Genome, Human, History, 20th Century, Human Genome Project, history, Humans, National Institutes of Health (U.S.), Risk Assessment, United States

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue microarrays for high-throughput molecular profiling of tumor specimens.

          Many genes and signalling pathways controlling cell proliferation, death and differentiation, as well as genomic integrity, are involved in cancer development. New techniques, such as serial analysis of gene expression and cDNA microarrays, have enabled measurement of the expression of thousands of genes in a single experiment, revealing many new, potentially important cancer genes. These genome screening tools can comprehensively survey one tumor at a time; however, analysis of hundreds of specimens from patients in different stages of disease is needed to establish the diagnostic, prognostic and therapeutic importance of each of the emerging cancer gene candidates. Here we have developed an array-based high-throughput technique that facilitates gene expression and copy number surveys of very large numbers of tumors. As many as 1000 cylindrical tissue biopsies from individual tumors can be distributed in a single tumor tissue microarray. Sections of the microarray provide targets for parallel in situ detection of DNA, RNA and protein targets in each specimen on the array, and consecutive sections allow the rapid analysis of hundreds of molecular markers in the same set of specimens. Our detection of six gene amplifications as well as p53 and estrogen receptor expression in breast cancer demonstrates the power of this technique for defining new subgroups of tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of a cDNA microarray to analyse gene expression patterns in human cancer.

            The development and progression of cancer and the experimental reversal of tumorigenicity are accompanied by complex changes in patterns of gene expression. Microarrays of cDNA provide a powerful tool for studying these complex phenomena. The tumorigenic properties of a human melanoma cell line, UACC-903, can be suppressed by introduction of a normal human chromosome 6, resulting in a reduction of growth rate, restoration of contact inhibition, and suppression of both soft agar clonogenicity and tumorigenicity in nude mice. We used a high density microarray of 1,161 DNA elements to search for differences in gene expression associated with tumour suppression in this system. Fluorescent probes for hybridization were derived from two sources of cellular mRNA [UACC-903 and UACC-903(+6)] which were labelled with different fluors to provide a direct and internally controlled comparison of the mRNA levels corresponding to each arrayed gene. The fluorescence signals representing hybridization to each arrayed gene were analysed to determine the relative abundance in the two samples of mRNAs corresponding to each gene. Previously unrecognized alterations in the expression of specific genes provide leads for further investigation of the genetic basis of the tumorigenic phenotype of these cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1)

              The disease maturity-onset diabetes of the young (MODY) is a genetically heterogeneous monogenic form of non-insulin-dependent (type 2) diabetes mellitus (NIDDM), characterized by early onset, usually before 25 years of age and often in adolescence or childhood, and by autosomal dominant inheritance. It has been estimated that 2-5% of patients with NIDDM may have this form of diabetes mellitus. Clinical studies have shown that prediabetic MODY subjects have normal insulin sensitivity but suffer from a defect in glucose-stimulated insulin secretion, suggesting that pancreatic beta-cell dysfunction rather than insulin resistance is the primary defect in this disorder. Linkage studies have localized the genes that are mutated in MODY on human chromosomes 20 (MODY1), 7 (MODY2) and 12 (MODY3), with MODY2 and MODY3 being allelic with the genes encoding glucokinase, a key regulator of insulin secretion, and hepatocyte nuclear factor-1alpha (HNF-1alpha), a transcription factor involved in tissue-specific regulation of liver genes but also expressed in pancreatic islets, insulinoma cells and other tissues. Here we show that MODY1 is the gene encoding HNF-4alpha (gene symbol, TCF14), a member of the steroid/thyroid hormone receptor superfamily and an upstream regulator of HNF-1alpha expression.
                Bookmark

                Author and article information

                Comments

                Comment on this article