26
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hippuric acid nanocomposite enhances doxorubicin and oxaliplatin-induced cytotoxicity in MDA-MB231, MCF-7 and Caco2 cell lines

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The aim of the current study is to design a new nanocomposite for inducing cytotoxicity of doxorubicin and oxaliplatin toward MDA-MB231, MCF-7, and Caco2 cell lines. A hippuric acid (HA) zinc layered hydroxide (ZLH) nanocomposite was synthesized under an aqueous environment using HA and zinc oxide (ZnO) as the precursors.

          Methods

          The hippuric acid nanocomposite (HAN) was prepared by the direct reaction of a HA solution with an aqueous suspension of ZnO.

          Results

          The basal spacing of the nanocomposite was 21.3 Å, which is average of four harmonics at 2θ = 8.32°, 12.50°, 16.68°, and 20.84°. This result indicates that the hippurate anion was successfully intercalated into the interlayer space of ZLH. The combinations of HAN with chemotherapy (drugs) has inhibited the cell growth of the MDA-MB231, MCF-7, and Caco2 cancer cells when compared to drugs alone. An IC 50 value for the combination of HAN with doxorubicin toward MCF-7 is 0.19 ± 0.15 μg/mL and toward MDA-MB231 is 0.13 ± 0.10 μg/mL. Similarly, the IC 50 for the combination of HAN with oxaliplatin toward Caco2 is 0.24 ± 0.11 μg/mL. In the antiproliferative results, the equal combination of HAN (0.5 μg/mL) with doxorubicin (0.5 μg/mL) has reduced the cell proliferation in MCF-7 and MDA-MB-231 cells into 37.3% and 17.6%, respectively after 24 hours. Similarly, the antiproliferation percentage for equal combination HAN with oxaliplatin (5.00 μg/mL) toward Caco2 is 72.7% after 24 hours.

          Conclusion

          The resulting combination HAN with drugs has exhibited higher inhibition in cells growth in all cancer cell lines.

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A multidrug resistance transporter from human MCF-7 breast cancer cells.

          MCF-7/AdrVp is a multidrug-resistant human breast cancer subline that displays an ATP-dependent reduction in the intracellular accumulation of anthracycline anticancer drugs in the absence of overexpression of known multidrug resistance transporters such as P glycoprotein or the multidrug resistance protein. RNA fingerprinting led to the identification of a 2.4-kb mRNA that is overexpressed in MCF-7/AdrVp cells relative to parental MCF-7 cells. The mRNA encodes a 655-aa [corrected] member of the ATP-binding cassette superfamily of transporters that we term breast cancer resistance protein (BCRP). Enforced expression of the full-length BCRP cDNA in MCF-7 breast cancer cells confers resistance to mitoxantrone, doxorubicin, and daunorubicin, reduces daunorubicin accumulation and retention, and causes an ATP-dependent enhancement of the efflux of rhodamine 123 in the cloned transfected cells. BCRP is a xenobiotic transporter that appears to play a major role in the multidrug resistance phenotype of MCF-7/AdrVp human breast cancer cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays.

            Doxorubicin is considered to be the most effective agent in the treatment of breast cancer patients. Unfortunately, resistance to this agent is common, representing a major obstacle to successful treatment. The identification of novel biomarkers that are able to predict treatment response may allow therapy to be tailored to individual patients. Antibody microarrays provide a powerful new technique, enabling the global comparative analysis of many proteins simultaneously. This technology may identify a panel of proteins to discriminate between drug-resistant and drug-sensitive samples. The Panorama Cell Signaling Antibody Microarray was exploited to analyze the MDA-MB-231 breast cancer cell line and a novel derivative, which displays significant resistance to doxorubicin at clinically relevant concentrations. The microarray comprised 224 antibodies selected from a variety of pathways, including apoptotic and cell signaling pathways. A standard >/=2.0-fold cutoff value was used to determine differentially expressed proteins. A decrease in the expression of mitogen-activated protein kinase-activated monophosphotyrosine (phosphorylated extracellular signal-regulated kinase; 2.8-fold decrease), cyclin D2 (2.5-fold decrease), cytokeratin 18 (2.5-fold decrease), cyclin B1 (2.4-fold decrease), and heterogeneous nuclear ribonucleoprotein m3-m4 (2.0-fold decrease) was associated with doxorubicin resistance. Western blotting was exploited to confirm results from the antibody microarray experiment. These results suggest that antibody microarrays can be used to identify novel biomarkers and further validation may reveal mechanisms of chemotherapy resistance and identify potential therapeutic targets. [Mol Cancer Ther 2006;5(8):2115-20].
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases.

              Bisphosphonate (BP), a specific inhibitor of osteoclasts, has been widely used as a beneficial agent for the treatment of bone metastases in patients with breast cancer. It is well recognized that BP reduces osteolysis by promoting apoptosis in osteoclasts. However, recent animal and human data suggest that BPs not only reduce osteolysis associated with metastatic breast cancer, but also decrease tumor burden in bone. The mechanisms by which tumor burden is decreased following BP administration are unknown. Here we examined the effects of the BP ibandronate on MDA-231 human breast cancer cells in bone metastases in a well-characterized animal model of bone metastasis. Ibandronate, which was administered (s.c. daily; 4 microg/mouse/day) after bone metastases were established, inhibited the progression of established osteolytic bone metastases as assessed by radiographic analysis. Histological and histomorphometrical examination revealed that ibandronate reduced osteoclastic bone resorption, with increased apoptosis in osteoclasts. Furthermore, ibandronate also significantly decreased the MDA-231 tumor burden, with increased apoptosis in MDA-231 breast cancer cells in bone metastases. In contrast, ibandronate failed to inhibit MDA-231 tumor formation with no effects on apoptosis in MDA-231 breast cancer cells in the orthotopic mammary fat pads. These data suggest that the effects of ibandronate on apoptosis in MDA-231 breast cancer cells are restricted in bone in which ibandronate selectively deposits. Consistent with these in vivo results, a relatively high concentration of ibandronate (100 microM) increased caspase-3 activity and induced DNA fragmentation in MDA-231 breast cancer cells in culture. Moreover, a caspase inhibitor, z-Val-Ala-Asp-fluoromethyl ketone, blocked ibandronate-induced DNA fragmentation in MDA-231 cells, suggesting an involvement of caspase-3 in ibandronate-induced apoptosis. Our results suggest that BP suppresses bone metastases through promotion of apoptosis in metastatic cancer cells as well as in osteoclasts. However, it still remains open whether BP has direct anticancer actions in vivo.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2013
                14 January 2013
                : 7
                : 25-31
                Affiliations
                [1 ]Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
                [2 ]Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
                [3 ]Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
                [4 ]Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
                Author notes
                Correspondence: Mohd Zobir Hussein, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, Tel +60 389 466 801, Fax +60 389 435 380, Email mzobir@ 123456science.upm.edu.my
                Article
                dddt-7-025
                10.2147/DDDT.S37070
                3549678
                23345969
                59f050c2-984e-4c99-ae62-ec5460584ac1
                © 2013 Hussein Al Ali et al, publisher and licensee Dove Medical Press Ltd

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                hippuric acid nanocomposite,zinc-layered hydroxide,doxorubicin,oxaliplatin,mda-mb231,mcf-7,caco2 cell lines

                Comments

                Comment on this article