91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mega-evolutionary dynamics of the adaptive radiation of birds

      Nature
      Springer Nature
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Tree of Life Reveals Clock-Like Speciation and Diversification

          Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional traits and niche-based tree community assembly in an Amazonian forest.

            It is debated whether species-level differences in ecological strategy, which play a key role in much of coexistence theory, are important in structuring highly diverse communities. We examined the co-occurrence patterns of over 1100 tree species in a 25-hectare Amazonian forest plot in relation to field-measured functional traits. Using a null model approach, we show that co-occurring trees are often less ecologically similar than a niche-free (neutral) model predicts. Furthermore, we find evidence for processes that simultaneously drive convergence and divergence in key aspects of plant strategy, suggesting that at least two distinct niche-based processes are occurring. Our results show that strategy differentiation among species contributes to the maintenance of diversity in one of the most diverse tropical forests in the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees.

              Phylogenetic comparative methods are essential for addressing evolutionary hypotheses with interspecific data. The scale and scope of such data have increased dramatically in the past few years. Many existing approaches are either computationally infeasible or inappropriate for data of this size. To address both of these problems, we present geiger v2.0, a complete overhaul of the popular R package geiger. We have reimplemented existing methods with more efficient algorithms and have developed several new approaches for accomodating heterogeneous models and data types.
                Bookmark

                Author and article information

                Journal
                10.1038/nature21074
                http://www.springer.com/tdm

                Comments

                Comment on this article