13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Fat-free mass change after nutritional rehabilitation in weight losing COPD: role of insulin, C-reactive protein and tissue hypoxia

      International Journal of Chronic Obstructive Pulmonary Disease
      Dove Medical Press
      copd, pulmonary rehabilitation, branched chain amino acids, insulin, systemic inflammation

      Read this article at

      ScienceOpenPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Fat-free mass (FFM) depletion marks the imbalance between tissue protein synthesis and breakdown in chronic obstructive pulmonary disease (COPD). To date, the role of essential amino acid supplementation (EAAs) in FFM repletion has not been fully acknowledged. A pilot study was undertaken in patients attending pulmonary rehabilitation. Methods: 28 COPD patients with dynamic weight loss > 5% over the last 6 months were randomized to receive EAAs embedded in a 12-week rehabilitation program (EAAs group n = 14), or to the same program without supplementation (C group n = 14). Primary outcome measures were changes in body weight and FFM, using dual X-ray absorptiometry (DEXA). Results: At the 12th week, a body weight increment occurred in 92% and 15% of patients in the EAAs and C group, respectively, with an average increase of 3.8 ± 2.6 kg (P = 0.0002) and −0.1 ± 1.1 kg (P = 0.81), respectively. A FFM increment occurred in 69% and 15% of EAAs and C patients, respectively, with an average increase of 1.5 ± 2.6 kg (P = 0.05) and −0.1 ± 2.3 kg (P = 0.94), respectively. In the EAAs group, FFM change was significantly related to fasting insulin (r2 0.68, P < 0.0005), C-reactive protein (C-RP) (r2 = 0.46, P < 0.01), and oxygen extraction tension (PaO2x) (r2 = 0.46, P < 0.01) at end of treatment. These three variables were highly correlated in both groups (r > 0.7, P < 0.005 in all tests). Conclusions: Changes in FFM promoted by EAAs are related to cellular energy and tissue oxygen availability in depleted COPD. Insulin, C-RP, and PaO2x must be regarded as clinical markers of an amino acid-stimulated signaling to FFM accretion.

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease.

            Chronic obstructive pulmonary disease (COPD) is characterized by an incompletely reversible limitation in airflow. A physiological variable--the forced expiratory volume in one second (FEV1)--is often used to grade the severity of COPD. However, patients with COPD have systemic manifestations that are not reflected by the FEV1. We hypothesized that a multidimensional grading system that assessed the respiratory and systemic expressions of COPD would better categorize and predict outcome in these patients. We first evaluated 207 patients and found that four factors predicted the risk of death in this cohort: the body-mass index (B), the degree of airflow obstruction (O) and dyspnea (D), and exercise capacity (E), measured by the six-minute-walk test. We used these variables to construct the BODE index, a multidimensional 10-point scale in which higher scores indicate a higher risk of death. We then prospectively validated the index in a cohort of 625 patients, with death from any cause and from respiratory causes as the outcome variables. There were 25 deaths among the first 207 patients and 162 deaths (26 percent) in the validation cohort. Sixty-one percent of the deaths in the validation cohort were due to respiratory insufficiency, 14 percent to myocardial infarction, 12 percent to lung cancer, and 13 percent to other causes. Patients with higher BODE scores were at higher risk for death; the hazard ratio for death from any cause per one-point increase in the BODE score was 1.34 (95 percent confidence interval, 1.26 to 1.42; P<0.001), and the hazard ratio for death from respiratory causes was 1.62 (95 percent confidence interval, 1.48 to 1.77; P<0.001). The C statistic for the ability of the BODE index to predict the risk of death was larger than that for the FEV1 (0.74 vs. 0.65). The BODE index, a simple multidimensional grading system, is better than the FEV1 at predicting the risk of death from any cause and from respiratory causes among patients with COPD. Copyright 2004 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exercise and the immune system: regulation, integration, and adaptation.

              Stress-induced immunological reactions to exercise have stimulated much research into stress immunology and neuroimmunology. It is suggested that exercise can be employed as a model of temporary immunosuppression that occurs after severe physical stress. The exercise-stress model can be easily manipulated experimentally and allows for the study of interactions between the nervous, the endocrine, and the immune systems. This review focuses on mechanisms underlying exercise-induced immune changes such as neuroendocrinological factors including catecholamines, growth hormone, cortisol, beta-endorphin, and sex steroids. The contribution of a metabolic link between skeletal muscles and the lymphoid system is also reviewed. The mechanisms of exercise-associated muscle damage and the initiation of the inflammatory cytokine cascade are discussed. Given that exercise modulates the immune system in healthy individuals, considerations of the clinical ramifications of exercise in the prevention of diseases for which the immune system has a role is of importance. Accordingly, drawing on the experimental, clinical, and epidemiological literature, we address the interactions between exercise and infectious diseases as well as exercise and neoplasia within the context of both aging and nutrition.
                Bookmark

                Author and article information

                Journal
                20368909
                2846151
                https://creativecommons.org/licenses/by-nc/3.0/

                Respiratory medicine
                copd,pulmonary rehabilitation,branched chain amino acids,insulin,systemic inflammation

                Comments

                Comment on this article