+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Hyaluronidase from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, structural modeling, purification, and immunological analysis.


      Amino Acid Sequence, Animals, Base Sequence, Bees, immunology, metabolism, Cloning, Molecular, methods, Cross Reactions, DNA, Complementary, genetics, Hyaluronoglucosaminidase, analysis, Molecular Sequence Data, Molecular Weight, Protein Structure, Tertiary, Proteomics, Sequence Alignment, Species Specificity, Wasp Venoms, chemistry, enzymology, Wasps

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          In this study, we describe the cDNA cloning, sequencing, and 3-D structure of the allergen hyaluronidase from Polybia paulista venom (Pp-Hyal). Using a proteomic approach, the native form of Pp-Hyal was purified to homogeneity and used to produce a Pp-specific polyclonal antibody. The results revealed that Pp-Hyal can be classified as a glycosyl hydrolase and that the full-length Pp-Hyal cDNA (1315 bp; GI: 302201582) is similar (80-90%) to hyaluronidase from the venoms of endemic Northern wasp species. The isolated mature protein is comprised of 338 amino acids, with a theoretical pI of 8.77 and a molecular mass of 39,648.8 Da versus a pI of 8.13 and 43,277.0 Da indicated by MS. The Pp-Hyal 3D-structural model revealed a central core (α/β)(7) barrel, two sulfide bonds (Cys 19-308 and Cys 185-197), and three putative glycosylation sites (Asn79, Asn187, and Asn325), two of which are also found in the rVes v 2 protein. Based on the model, residues Ser299, Asp107, and Glu109 interact with the substrate and potential epitopes (five conformational and seven linear) located at surface-exposed regions of the structure. Purified native Pp-Hyal showed high similarity (97%) with hyaluronidase from Polistes annularis venom (Q9U6V9). Immunoblotting analysis confirmed the specificity of the Pp-Hyal-specific antibody as it recognized the Pp-Hyal protein in both the purified fraction and P. paulista crude venom. No reaction was observed with the venoms of Apis mellifera, Solenopsis invicta, Agelaia pallipes pallipes, and Polistes lanio lanio, with the exception of immune cross-reactivity with venoms of the genus Polybia (sericea and ignobilis). Our results demonstrate cross-reactivity only between wasp venoms from the genus Polybia. The absence of cross-reactivity between the venoms of wasps and bees observed here is important because it allows identification of the insect responsible for sensitization, or at least of the phylogenetically closest insect, in order to facilitate effective immunotherapy in allergic patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

          Related collections

          Author and article information



          Comment on this article