51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Saponins fromAralia taibaiensisAttenuate D-Galactose-Induced Aging in Rats by Activating FOXO3a and Nrf2 Pathways

      Oxidative Medicine and Cellular Longevity
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β -galactosidase (SA β -gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes.

          Glutathione-dependent catalysis is a metabolic adaptation to chemical challenges encountered by all life forms. In the course of evolution, nature optimized numerous mechanisms to use glutathione as the most versatile nucleophile for the conversion of a plethora of sulfur-, oxygen- or carbon-containing electrophilic substances. This comprehensive review summarizes fundamental principles of glutathione catalysis and compares the structures and mechanisms of glutathione-dependent enzymes, including glutathione reductase, glutaredoxins, glutathione peroxidases, peroxiredoxins, glyoxalases 1 and 2, glutathione transferases and MAPEG. Moreover, open mechanistic questions, evolutionary aspects and the physiological relevance of glutathione catalysis are discussed for each enzyme family. It is surprising how little is known about many glutathione-dependent enzymes, how often reaction geometries and acid-base catalysts are neglected, and how many mechanistic puzzles remain unsolved despite almost a century of research. On the one hand, several enzyme families with non-related protein folds recognize the glutathione moiety of their substrates. On the other hand, the thioredoxin fold is often used for glutathione catalysis. Ancient as well as recent structural changes of this fold did not only significantly alter the reaction mechanism, but also resulted in completely different protein functions. Glutathione-dependent enzymes are excellent study objects for structure-function relationships and molecular evolution. Notably, in times of systems biology, the outcome of models on glutathione metabolism and redox regulation is more than questionable as long as fundamental enzyme properties are neither studied nor understood. Furthermore, several of the presented mechanisms could have implications for drug development. This article is part of a Special Issue entitled Cellular functions of glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FoxO transcription factors; Regulation by AKT and 14-3-3 proteins.

            The forkhead box O (FoxO) transcription factor family is a key player in an evolutionary conserved pathway downstream of insulin and insulin-like growth factor receptors. The mammalian FoxO family consists of FoxO1, 3, 4 and 6, which share high similarity in their structure, function and regulation. FoxO proteins are involved in diverse cellular and physiological processes including cell proliferation, apoptosis, reactive oxygen species (ROS) response, longevity, cancer and regulation of cell cycle and metabolism. The regulation of FoxO protein function involves an intricate network of posttranslational modifications and protein-protein interactions that provide integrated cellular response to changing physiological conditions and cues. AKT was identified in early genetic and biochemical studies as a main regulator of FoxO function in diverse organisms. Though other FoxO regulatory pathways and mechanisms have been delineated since, AKT remains a key regulator of the pathway. The present review summarizes the current knowledge of FoxO regulation by AKT and 14-3-3 proteins, focusing on its mechanistic and structural aspects and discusses its crosstalk with the other FoxO regulatory mechanisms. This article is part of a Special Issue entitled: PI3K-AKT-FoxO axis in cancer and aging. 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress, caloric restriction, and aging.

              Under normal physiological conditions, the use of oxygen by cells of aerobic organisms generates potentially deleterious reactive oxygen metabolites. A chronic state of oxidative stress exists in cells because of an imbalance between prooxidants and antioxidants. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. Support for this hypothesis includes the following observations: (i) Overexpression of antioxidative enzymes retards the age-related accrual of oxidative damage and extends the maximum life-span of transgenic Drosophila melanogaster. (ii) Variations in longevity among different species inversely correlate with the rates of mitochondrial generation of the superoxide anion radical (O2) and hydrogen peroxide. (iii) Restriction of caloric intake lowers steady-state levels of oxidative stress and damage, retards age-associated changes, and extends the maximum life-span in mammals.
                Bookmark

                Author and article information

                Journal
                10.1155/2014/320513
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article