102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines

      Genome Biology
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          CpG islands in vertebrate genomes.

          Although vertebrate DNA is generally depleted in the dinucleotide CpG, it has recently been shown that some vertebrate genes contain CpG islands, regions of DNA with a high G+C content and a high frequency of CpG dinucleotides relative to the bulk genome. In this study, a large number of sequences of vertebrate genes were screened for the presence of CpG islands. Each CpG island was then analysed in terms of length, nucleotide composition, frequency of CpG dinucleotides, and location relative to the transcription unit of the associated gene. CpG islands were associated with the 5' ends of all housekeeping genes and many tissue-specific genes, and with the 3' ends of some tissue-specific genes. A few genes contained both 5' and 3' CpG islands, separated by several thousand base-pairs of CpG-depleted DNA. The 5' CpG islands extended through 5'-flanking DNA, exons and introns, whereas most of the 3' CpG islands appeared to be associated with exons. CpG islands were generally found in the same position relative to the transcription unit of equivalent genes in different species, with some notable exceptions. The locations of G/C boxes, composed of the sequence GGGCGG or its reverse complement CCGCCC, were investigated relative to the location of CpG islands. G/C boxes were found to be rare in CpG-depleted DNA and plentiful in CpG islands, where they occurred in 3' CpG islands, as well as in 5' CpG islands associated with tissue-specific and housekeeping genes. G/C boxes were located both upstream and downstream from the transcription start site of genes with 5' CpG islands. Thus, G/C boxes appeared to be a feature of CpG islands in general, rather than a feature of the promoter region of housekeeping genes. Two theories for the maintenance of a high frequency of CpG dinucleotides in CpG islands were tested: that CpG islands in methylated genomes are maintained, despite a tendency for 5mCpG to mutate by deamination to TpG+CpA, by the structural stability of a high G+C content alone, and that CpG islands associated with exons result from some selective importance of the arginine codon CGX. Neither of these theories could account for the distribution of CpG dinucleotides in the sequences analysed. Possible functions of CpG islands in transcriptional and post-transcriptional regulation of gene expression were discussed, and were related to theories for the maintenance of CpG islands as "methylation-free zones" in germline DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation profiling of human chromosomes 6, 20 and 22

            DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methylation and a core region surrounding the transcriptional start site as informative surrogate for promoter methylation. We find 17% of the 873 analyzed genes differentially methylated in their 5′-untranslated regions (5′-UTR) and about one third of the differentially methylated 5′-UTRs to be inversely correlated with transcription. While our study was controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common regulatory variation impacts gene expression in a cell type-dependent manner.

              Studies correlating genetic variation to gene expression facilitate the interpretation of common human phenotypes and disease. As functional variants may be operating in a tissue-dependent manner, we performed gene expression profiling and association with genetic variants (single-nucleotide polymorphisms) on three cell types of 75 individuals. We detected cell type-specific genetic effects, with 69 to 80% of regulatory variants operating in a cell type-specific manner, and identified multiple expressive quantitative trait loci (eQTLs) per gene, unique or shared among cell types and positively correlated with the number of transcripts per gene. Cell type-specific eQTLs were found at larger distances from genes and at lower effect size, similar to known enhancers. These data suggest that the complete regulatory variant repertoire can only be uncovered in the context of cell-type specificity.
                Bookmark

                Author and article information

                Journal
                10.1186/gb-2011-12-1-r10

                Comments

                Comment on this article