38
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2.

      Drug Design, Development and Therapy
      Informa UK Ltd.
      miR-125a-5p, cervical carcinoma, cancer migration, cancer proliferation, ABL2

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we intended to understand the regulatory mechanisms of microRNA-125a-5p (miR-125a-5p) in human cervical carcinoma.

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth

          MicroRNAs (miRNAs) play important roles in cancer development. By cloning and sequencing of a HPV16+ CaSki cell small RNA library, we isolated 174 miRNAs (including the novel miR-193c) which could be grouped into 46 different miRNA species, with miR-21, miR-24, miR-27a, and miR-205 being most abundant. We chose for further study 10 miRNAs according to their cloning frequency and associated their levels in 10 cervical cancer- or cervical intraepithelial neoplasia-derived cell lines. No correlation was observed between their expression with the presence or absence of an integrated or episomal HPV genome. All cell lines examined contained no detectable miR-143 and miR-145. HPV-infected cell lines expressed a different set of miRNAs when grown in organotypic raft cultured as compared to monolayer cell culture, including expression of miR-143 and miR-145. This suggests a correlation between miRNA expression and tissue differentiation. Using miRNA array analyses for age-matched normal cervix and cervical cancer tissues, in combination with northern blot verification, we identified significantly deregulated miRNAs in cervical cancer tissues, with miR-126, miR-143, and miR-145 downregulation and miR-15b, miR-16, miR-146a, and miR-155 upregulation. Functional studies showed that both miR-143 and miR-145 are suppressive to cell growth. When introduced into cell lines, miR-146a was found to promote cell proliferation. Collectively, our data indicate that downregulation of miR-143 and miR-145 and upregulation of miR-146a play a role in cervical carcinogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Diverse functions of miR-125 family in different cell contexts

            MicroRNAs (miRNAs) are emerging as a novel class of non-coding RNA molecules that regulate gene expression at a post-transcriptional level. More than 1000 miRNAs have been identified in human cells to date, and they are reported to play important roles in normal cell homeostasis, cell metastasis and disease pathogensis and progression. MiR-125, which is a highly conserved miRNA throughout diverse species from nematode to humans, consists of three homologs hsa-miR-125a, hsa-miR-125b-1 and hsa-miR-125-2. Members of this family have been validated to be down-regulated, exhibiting its disease-suppressing properties in many different types of diseases, while they also have disease-promoting functions in certain contexts. MiR-125 targets a number of genes such as transcription factors, matrix-metalloprotease, members of Bcl-2 family and others, aberrance of which may lead to abnormal proliferation, metastasis and invasion of cells, even carcinomas. Furthermore, miR-125 plays a crucial role in immunological host defense, especially in response to bacterial or viral infections. In this review, we summarize the implication of miR-125 family in disease suppression and promotion, focusing on carcinoma and host immune responses. We also discussed the potential of this miRNA family as promising biomarkers and therapeutic targets for different diseases in future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b.

              Sirtuins are nicotinamide adenine dinucleotide oxidized form (NAD(+) )-dependent deacetylases and function in cellular metabolism, stress resistance, and aging. For sirtuin7 (SIRT7), a role in ribosomal gene transcription is proposed, but its function in cancer has been unclear. In this study we show that SIRT7 expression was up-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients. SIRT7 knockdown influenced the cell cycle and caused a significant increase of liver cancer cells to remain in the G1 /S phase and to suppress growth. This treatment restored p21(WAF1/Cip1) , induced Beclin-1, and repressed cyclin D1. In addition, sustained suppression of SIRT7 reduced the in vivo tumor growth rate in a mouse xenograft model. To explore mechanisms in SIRT7 regulation, microRNA (miRNA) profiling was carried out. This identified five significantly down-regulated miRNAs in HCC. Bioinformatics analysis of target sites and ectopic expression in HCC cells showed that miR-125a-5p and miR-125b suppressed SIRT7 and cyclin D1 expression and induced p21(WAF1/Cip1) -dependent G1 cell cycle arrest. Furthermore, treatment of HCC cells with 5-aza-2'-deoxycytidine or ectopic expression of wildtype but not mutated p53 restored miR-125a-5p and miR-125b expression and inhibited tumor cell growth, suggesting their regulation by promoter methylation and p53 activity. To show the clinical significance of these findings, mutations in the DNA binding domain of p53 and promoter methylation of miR-125b were investigated. Four out of nine patients with induced SIRT7 carried mutations in the p53 gene and one patient showed hypermethylation of the miR-125b promoter region. Our findings suggest the oncogenic potential of SIRT7 in hepatocarcinogenesis. A regulatory loop is proposed whereby SIRT7 inhibits transcriptional activation of p21(WAF1/Cip1) by way of repression of miR-125a-5p and miR-125b. This makes SIRT7 a promising target in cancer therapy. (HEPATOLOGY 2013). Copyright © 2012 American Association for the Study of Liver Diseases.
                Bookmark

                Author and article information

                Journal
                26766902
                4699546
                10.2147/DDDT.S93104

                miR-125a-5p,cervical carcinoma,cancer migration,cancer proliferation,ABL2

                Comments

                Comment on this article