16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Hypothalamic Gene Expression in Sheep for Cocaine- and Amphetamine-Regulated Transcript, Pro-Opiomelanocortin, Neuropeptide Y, Agouti-Related Peptide and Leptin Receptor and Responses to Negative Energy Balance

      , , , ,
      Neuroendocrinology
      S. Karger AG

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypothalamic pathways involved in the regulation of energy balance have not been widely studied in ruminants to date. Here, we used in situ hybridisation to study the gene expression of a number of leptin-sensitive receptors and neuropeptides in the ovine hypothalamus. Gene expression was first localised for cocaine- and amphetamine-regulated transcript (CART) and agouti-related peptide (AGRP). We then examined in adult male castrated sheep the effects of acute negative energy balance induced by a 4-day fast on the amounts of these mRNAs and those for leptin receptor (OB-Rb), neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). CART mRNA was localised in the arcuate nucleus (ARC), paraventricular nucleus, median eminence and ventromedial hypothalamic nucleus, and extensive co-localisation with POMC mRNA was demonstrated in the ARC. AGRP mRNA was localised in the ARC. Fasting up-regulated gene expression for OB-Rb and for the orexigenic neuropeptides NPY and AGRP in the ARC. There was a trend towards down-regulation of gene expression for the anorexigenic neuropeptide CART and no effect on POMC in the ARC, although these results are inconclusive. The presence or absence of oestradiol-containing subcutaneous implants did not influence gene expression or the effects of fasting. The hypothalamic changes were consistent with responses to the observed reduction in circulation leptin and suggest that the peripheral feedback and central mechanisms for restoring the energy balance may be largely conserved across monogastric and ruminant species.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Leptin.

          The discovery of the adipose-derived hormone leptin has generated enormous interest in the interaction between peripheral signals and brain targets involved in the regulation of feeding and energy balance. Plasma leptin levels correlate with fat stores and respond to changes in energy balance. It was initially proposed that leptin serves a primary role as an anti-obesity hormone, but this role is commonly thwarted by leptin resistance. Leptin also serves as a mediator of the adaptation to fasting, and this role may be the primary function for which the molecule evolved. There is increasing evidence that leptin has systemic effects apart from those related to energy homeostasis, including regulation of neuroendocrine and immune function and a role in development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypothalamic CART is a new anorectic peptide regulated by leptin.

            The mammalian hypothalamus strongly influences ingestive behaviour through several different signalling molecules and receptor systems. Here we show that CART (cocaine- and amphetamine-regulated transcript), a brain-located peptide, is a satiety factor and is closely associated with the actions of two important regulators of food intake, leptin and neuropeptide Y. Food-deprived animals show a pronounced decrease in expression of CART messenger RNA in the arcuate nucleus. In animal models of obesity with disrupted leptin signalling, CART mRNA is almost absent from the arcuate nucleus. Peripheral administration of leptin to obese mice stimulates CART mRNA expression. When injected intracerebroventricularly into rats, recombinant CART peptide inhibits both normal and starvation-induced feeding, and completely blocks the feeding response induced by neuropeptide Y. An antiserum against CART increases feeding in normal rats, indicating that CART may be an endogenous inhibitor of food intake in normal animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antagonism of Central Melanocortin Receptors in Vitro and in Vivo by Agouti-Related Protein

              Expression of Agouti protein is normally limited to the skin where it affects pigmentation, but ubiquitous expression causes obesity. An expressed sequence tag was identified that encodes Agouti-related protein, whose RNA is normally expressed in the hypothalamus and whose levels were increased eightfold in ob/ob mice. Recombinant Agouti-related protein was a potent, selective antagonist of Mc3r and Mc4r, melanocortin receptor subtypes implicated in weight regulation. Ubiquitous expression of human AGRP complementary DNA in transgenic mice caused obesity without altering pigmentation. Thus, Agouti-related protein is a neuropeptide implicated in the normal control of body weight downstream of leptin signaling.
                Bookmark

                Author and article information

                Journal
                Neuroendocrinology
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                April 1 2002
                2002
                April 17 2002
                : 75
                : 4
                : 250-256
                Article
                10.1159/000054716
                0a88c144-cadf-4593-8d5d-03552d1d5ce1
                © 2002

                https://www.karger.com/Services/SiteLicenses

                https://www.karger.com/Services/SiteLicenses

                History

                Comments

                Comment on this article