489
views
0
recommends
+1 Recommend
0 collections
    32
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An Overview of CMIP5 and the Experiment Design

      , ,
      Bulletin of the American Meteorological Society
      American Meteorological Society

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: not found
          • Article: not found

          Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The next generation of scenarios for climate change research and assessment.

            Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              AMIP: The Atmospheric Model Intercomparison Project

              W. Gates (1992)
                Bookmark

                Author and article information

                Journal
                Bulletin of the American Meteorological Society
                Bull. Amer. Meteor. Soc.
                American Meteorological Society
                0003-0007
                1520-0477
                April 2012
                April 2012
                : 93
                : 4
                : 485-498
                Article
                10.1175/BAMS-D-11-00094.1
                187d0ef4-1eee-4f69-8249-da6b87b189ec
                © 2012
                History

                Comments

                Comment on this article