77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Navigating complexity to breed disease-resistant crops.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant diseases are responsible for substantial crop losses each year and pose a threat to global food security and agricultural sustainability. Improving crop resistance to pathogens through breeding is an environmentally sound method for managing disease and minimizing these losses. However, it is challenging to breed varieties with resistance that is effective, stable and broad-spectrum. Recent advances in genetic and genomic technologies have contributed to a better understanding of the complexity of host-pathogen interactions and have identified some of the genes and mechanisms that underlie resistance. This new knowledge is benefiting crop improvement through better-informed breeding strategies that utilize diverse forms of resistance at different scales, from the genome of a single plant to the plant varieties deployed across a region.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Sugar transporters for intercellular exchange and nutrition of pathogens.

          Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogen population genetics, evolutionary potential, and durable resistance.

            We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of pattern recognition receptor signalling in plants.

              Recognition of pathogen-derived molecules by pattern recognition receptors (PRRs) is a common feature of both animal and plant innate immune systems. In plants, PRR signalling is initiated at the cell surface by kinase complexes, resulting in the activation of immune responses that ward off microorganisms. However, the activation and amplitude of innate immune responses must be tightly controlled. In this Review, we summarize our knowledge of the early signalling events that follow PRR activation and describe the mechanisms that fine-tune immune signalling to maintain immune homeostasis. We also illustrate the mechanisms used by pathogens to inhibit innate immune signalling and discuss how the innate ability of plant cells to monitor the integrity of key immune components can lead to autoimmune phenotypes following genetic or pathogen-induced perturbations of these components.
                Bookmark

                Author and article information

                Journal
                Nat. Rev. Genet.
                Nature reviews. Genetics
                Springer Science and Business Media LLC
                1471-0064
                1471-0056
                Jan 2018
                : 19
                : 1
                Affiliations
                [1 ] School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA.
                [2 ] Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, USA.
                [3 ] United States Department of Agriculture Agricultural Research Service (USDA-ARS), Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA.
                Article
                nrg.2017.82
                10.1038/nrg.2017.82
                29109524
                c2d0fa89-801e-48fc-a957-c38ad84572b4
                History

                Comments

                Comment on this article