37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial Progenitor Cells for Ischemic Stroke: Update on Basic Research and Application

      Stem Cells International
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemic stroke is one of the leading causes of human death and disability worldwide. So far, ultra-early thrombolytic therapy is the most effective treatment. However, most patients still live with varying degrees of neurological dysfunction due to its narrow therapeutic time window. It has been confirmed in many studies that endothelial progenitor cells (EPCs), as a kind of adult stem cells, can protect the neurovascular unit by repairing the vascular endothelium and its secretory function, which contribute to the recovery of neurological function after an ischemic stroke. This paper reviews the basic researches and clinical trials of EPCs especially in the field of ischemic stroke and addresses the combination of EPC application with new technologies, including neurovascular intervention, synthetic particles, cytokines, and EPC modification, with the aim of shedding some light on the application of EPCs in treating ischemic stroke in the future.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.

          Recent studies provide increasing evidence that postnatal neovascularization involves bone marrow-derived circulating endothelial progenitor cells (EPCs). The regulation of EPCs in patients with coronary artery disease (CAD) is unclear at present. Therefore, we determined the number and functional activity of EPCs in 45 patients with CAD and 15 healthy volunteers. The numbers of isolated EPCs and circulating CD34/kinase insert domain receptor (KDR)-positive precursor cells were significantly reduced in patients with CAD by approximately 40% and 48%, respectively. To determine the influence of atherosclerotic risk factors, a risk factor score including age, sex, hypertension, diabetes, smoking, positive family history of CAD, and LDL cholesterol levels was used. The number of risk factors was significantly correlated with a reduction of EPC levels (R=-0.394, P=0.002) and CD34-/KDR-positive cells (R=-0.537, P<0.001). Analysis of the individual risk factors demonstrated that smokers had significantly reduced levels of EPCs (P<0.001) and CD34-/KDR-positive cells (P=0.003). Moreover, a positive family history of CAD was associated with reduced CD34-/KDR-positive cells (P=0.011). Most importantly, EPCs isolated from patients with CAD also revealed an impaired migratory response, which was inversely correlated with the number of risk factors (R=-0.484, P=0.002). By multivariate analysis, hypertension was identified as a major independent predictor for impaired EPC migration (P=0.043). The present study demonstrates that patients with CAD revealed reduced levels and functional impairment of EPCs, which correlated with risk factors for CAD. Given the important role of EPCs for neovascularization of ischemic tissue, the decrease of EPC numbers and activity may contribute to impaired vascularization in patients with CAD. The full text of this article is available at http://www.circresaha.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial.

            Preclinical studies have established that implantation of bone marrow-mononuclear cells, including endothelial progenitor cells, into ischaemic limbs increases collateral vessel formation. We investigated efficacy and safety of autologous implantation of bone marrow-mononuclear cells in patients with ischaemic limbs because of peripheral arterial disease. We first did a pilot study, in which 25 patients (group A) with unilateral ischaemia of the leg were injected with bone marrow-mononuclear cells into the gastrocnemius of the ischaemic limb and with saline into the less ischaemic limb. We then recruited 22 patients (group B) with bilateral leg ischaemia, who were randomly injected with bone marrow-mononuclear cells in one leg and peripheral blood-mononuclear cells in the other as a control. Primary outcomes were safety and feasibility of treatment, based on ankle-brachial index (ABI) and rest pain, and analysis was per protocol. Two patients were excluded from group B after randomisation. At 4 weeks in group B patients, ABI was significantly improved in legs injected with bone marrow-mononuclear cells compared with those injected with peripheral blood-mononuclear cells (difference 0.09 [95% CI 0.06-0.11]; p<0.0001). Similar improvements were seen for transcutaneous oxygen pressure (13 [9-17]; p<0.0001), rest pain (-0.85 [-1.6 to -0.12]; p=0.025), and pain-free walking time (1.2 [0.7-1.7]; p=0.0001). These improvements were sustained at 24 weeks. Similar improvements were seen in group A patients. Two patients in group A died after myocardial infarction unrelated to treatment. Autologous implantation of bone marrow-mononuclear cells could be safe and effective for achievement of therapeutic angiogenesis, because of the natural ability of marrow cells to supply endothelial progenitor cells and to secrete various angiogenic factors or cytokines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.

              Vascular endothelial growth factor (VEGF) has been shown to promote neovascularization in animal models and, more recently, in human subjects. This feature has been assumed to result exclusively from its direct effects on fully differentiated endothelial cells, i.e. angiogenesis. Given its regulatory role in both angiogenesis and vasculogenesis during fetal development, we investigated the hypothesis that VEGF may modulate endothelial progenitor cell (EPC) kinetics for postnatal neovascularization. Indeed, we observed an increase in circulating EPCs following VEGF administration in vivo. VEGF-induced mobilization of bone marrow-derived EPCs resulted in increased differentiated EPCs in vitro and augmented corneal neovascularization in vivo. These findings thus establish a novel role for VEGF in postnatal neovascularization which complements its known impact on angiogenesis.
                Bookmark

                Author and article information

                Journal
                10.1155/2017/2193432
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article