28
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective Effect of Pravastatin on Myocardial Ischemia Reperfusion Injury by Regulation of the miR-93/Nrf2/ARE Signal Pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          This research intended to study the mechanism of pravastatin in myocardial ischemia reperfusion (I/R) injury.

          Patients and Methods

          Altogether 70 male rats were selected and grouped into Sham operation group (Sham group), ischemia reperfusion group (I/R group), pravastatin pretreatment group (I/R+P group), I/R+miR-93-mimics, I/R+P+miR-93-mimics, I/R+Nrf2 siRNA, and I/R+P+Nrf2 siRNA group. The myocardial function of each group was detected.

          Results

          Myocardial I/R injury could lead to abnormal myocardial enzyme activity, inflammatory reaction and oxidative stress. However, pravastatin could significantly inhibit the activity of myocardial enzymes, alleviate inflammatory reaction and inhibit oxidative stress reaction, thus playing a protective role. Furthermore, cell experiments showed that pravastatin can alleviate the injury of H9C2 myocardial cells caused by I/R, inhibit the apoptosis of myocardial cells, and lead to a significant reduction in pro-apoptotic genes Bax, caspase-3 and caspase-9 transcription levels, an obvious increase in anti-apoptotic gene Bcl-2, and an increase in cell activity. After I/R induced injury, miR-93 level was significantly up-regulated and Nrf2 level was down-regulated. Over-expression of miR-93 or inhibition of Nrf2 expression would lead to further aggravation of I/R myocardial injury, increase the apoptosis rate of cells and decrease the activity of myocardial cells. Pravastatin administration could inhibit miR-93, activate and promote Nrf2 in myocardial tissue, and promote protein expression of downstream regulatory genes HO-1 and NQO1. In the I/R model, pravastatin was given. Over-expression of miR-93 or silencing Nrf2 could reverse the therapeutic effect of pravastatin on I/R.

          Conclusion

          Pravastatin acts as a protector on myocardial ischemia reperfusion injury by regulating miR-93/Nrf2/ARE signaling pathway.

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway

          Ginsenoside Rg1 (Rg1), a saponin extracted from Panax ginseng, has been well documented to be effective against ischemic/reperfusion (I/R) neuronal injury. However, the underlying mechanisms remain obscure. In the present study, we investigated the roles of Nrf2 and miR-144 in the protective effects of Rg1 against I/R-induced neuronal injury. In OGD/R-treated PC12 cells, Rg1 (0.01-1 μmol/L) dose-dependently attenuated the cell injury accompanied by prolonging nuclear accumulation of Nrf2, enhancing the transcriptional activity of Nrf2, as well as promoting the expression of ARE-target genes. The activation of the Nrf2/ARE pathway by Rg1 was independent of disassociation with Keap1, but resulted from post-translational regulations. Knockdown of Nrf2 abolished all the protective changes of Rg1 in OGD/R-treated PC12 cells. Furthermore, Rg1 treatment significantly decreased the expression of miR-144, which downregulated Nrf2 production by targeting its 3'-untranlated region after OGD/R. Knockdown of Nrf2 had no effect on the expression of miR-144, suggesting that miR-144 was an upstream regulator of Nrf2. We revealed that there was a direct binding between Nrf2 and miR-144 in PC12 cells. Application of anti-miR-144 occluded the activation of the Nrf2/ARE pathway by Rg1 in OGD/R-treated PC12 cells. In tMCAO rats, administration of Rg1 (20 mg/kg) significantly alleviated ischemic injury, and activated Nrf2/ARE pathway. The protective effects of Rg1 were abolished by injecting of AAV-HIF-miR-144-shRNA into the predicted ischemic penumbra. In conclusion, our results demonstrate that Rg1 alleviates oxidative stress after I/R through inhibiting miR-144 activity and subsequently promoting the Nrf2/ARE pathway at the post-translational level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Critical Role of Nrf2 in Experimental Ischemic Stroke

            Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation.

              Vascular calcification is a common health problem related to oxidative stress, inflammation, and circulating calciprotein particles (CPP). Hydrogen sulfide is an endogenous signaling molecule with antioxidant properties and potential for drug development targeting redox signaling. Yet, its molecular mechanisms of action in vascular smooth muscle cell (VSMC) calcification have not been delineated. We therefore sought to identify key pathways involved in the calcification-inhibitory properties of sulfide employing our recently developed CPP-induced VSMC calcification model.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                22 September 2020
                2020
                : 14
                : 3853-3864
                Affiliations
                [1 ]Department of Cardiology, Xinxiang Central Hospital , Xinxiang, Henan Province, People’s Republic of China
                Author notes
                Correspondence: Lingling Liu Department of Cardiology, Xinxiang Central Hospital , Weibin District, Xinxiang, Henan Province, People’s Republic of China Tel +86-18603732581 Email ljlzq2001@126.com
                Article
                PMC7519819 PMC7519819 7519819 251726
                10.2147/DDDT.S251726
                7519819
                02fb2029-68a8-4e21-bb77-0e97bcf33d02
                © 2020 Liu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 28 February 2020
                : 05 August 2020
                Page count
                Figures: 6, Tables: 1, References: 34, Pages: 12
                Categories
                Original Research

                myocardial ischemia reperfusion injury,protective effect,miR-93/Nrf2/ARE,pravastatin

                Comments

                Comment on this article