73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cutaneous SCC (cSCC) is the most frequently occuring skin cancer with metastatic potential and can manifest rapidly as a common side effect in patients receiving systemic kinase inhibitors. Here, we use massively parallel exome and targeted level sequencing of 132 sporadic cSCCs and of 39 squamoproliferative lesions and cSCCs arising in patients receiving the BRAF inhibitor vemurafenib, as well as 10 normal skin samples, to identify NOTCH1 mutation as an early event in squamous cell carcinogenesis. Bisected vemurafenib-induced lesions revealed surprising heterogeneity with different activating HRAS and NOTCH1 mutations identified in two halves of the same cSCC, suggesting polyclonal origin. Immunohistochemical analysis using an antibody specific to nuclear NOTCH1 correlates with mutation status in sporadic cSCCs, and regions of NOTCH1 loss or downregulation are frequently observed in normal-looking skin. Our data indicate that NOTCH1 acts as a gatekeeper in human cSCC.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.

          In December 1997, the National Cancer Institute sponsored "The International Workshop on Microsatellite Instability and RER Phenotypes in Cancer Detection and Familial Predisposition," to review and unify the field. The following recommendations were endorsed at the workshop. (a) The form of genomic instability associated with defective DNA mismatch repair in tumors is to be called microsatellite instability (MSI). (b) A panel of five microsatellites has been validated and is recommended as a reference panel for future research in the field. Tumors may be characterized on the basis of: high-frequency MSI (MSI-H), if two or more of the five markers show instability (i.e., have insertion/deletion mutations), and low-frequency MSI (MSI-L), if only one of the five markers shows instability. The distinction between microsatellite stable (MSS) and low frequency MSI (MSI-L) can only be accomplished if a greater number of markers is utilized. (c) A unique clinical and pathological phenotype is identified for the MSI-H tumors, which comprise approximately 15% of colorectal cancers, whereas MSI-L and MSS tumors appear to be phenotypically similar. MSI-H colorectal tumors are found predominantly in the proximal colon, have unique histopathological features, and are associated with a less aggressive clinical course than are stage-matched MSI-L or MSS tumors. Preclinical models suggest the possibility that these tumors may be resistant to the cytotoxicity induced by certain chemotherapeutic agents. The implications for MSI-L are not yet clear. (d) MSI can be measured in fresh or fixed tumor specimens equally well; microdissection of pathological specimens is recommended to enrich for neoplastic tissue; and normal tissue is required to document the presence of MSI. (e) The "Bethesda guidelines," which were developed in 1996 to assist in the selection of tumors for microsatellite analysis, are endorsed. (f) The spectrum of microsatellite alterations in noncolonic tumors was reviewed, and it was concluded that the above recommendations apply only to colorectal neoplasms. (g) A research agenda was recommended.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            APC mutations occur early during colorectal tumorigenesis.

            Human tumorigenesis is associated with the accumulation of mutations both in oncogenes and in tumour suppressor genes. But in no common adult cancer have the mutations that are critical in the early stages of the tumorigenic process been defined. We have attempted to determine if mutations of the APC gene play such a role in human colorectal tumours, which evolve from small benign tumours (adenomas) to larger malignant tumours (carcinomas) over the course of several decades. Here we report that sequence analysis of 41 colorectal tumours revealed that the majority of colorectal carcinomas (60%) and adenomas (63%) contained a mutated APC gene. Furthermore, the APC gene met two criteria of importance for tumour initiation. First, mutations of this gene were found in the earliest tumours that could be analysed, including adenomas as small as 0.5 cm in diameter. Second, the frequency of such mutations remained constant as tumours progressed from benign to malignant stages. These data provide strong evidence that mutations of the APC gene play a major role in the early development of colorectal neoplasms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors.

              Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L-mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)-pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L-mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann-La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.).
                Bookmark

                Author and article information

                Journal
                J. Invest. Dermatol.
                The Journal of investigative dermatology
                Springer Nature
                1523-1747
                0022-202X
                Oct 2014
                : 134
                : 10
                Affiliations
                [1 ] Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
                [2 ] Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
                [3 ] Eastern Sequence and Informatics Hub (EASIH), University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
                [4 ] Department of Dermatology, University of California, San Francisco, San Francisco, California, USA.
                [5 ] Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
                [6 ] Department of Cellular Pathology, Barts Health NHS Trust, London, UK.
                [7 ] 1] Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK [2] Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
                Article
                S0022-202X(15)36489-7 EMS57574
                10.1038/jid.2014.154
                4753672
                24662767
                2315ad59-b009-49d3-acac-8323de362da1
                History

                Comments

                Comment on this article