22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trends in Intensive Care for Patients with COVID-19 in England, Wales and Northern Ireland

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rationale: By describing trends in intensive care for patients with coronavirus disease (COVID-19) we aim to support clinical learning, service planning, and hypothesis generation. Objectives: To describe variation in ICU admission rates over time and by geography during the first wave of the epidemic in England, Wales, and Northern Ireland; to describe trends in patient characteristics on admission to ICU, first-24-hours physiology in ICU, processes of care in ICU and patient outcomes; and to explore deviations in trends during the peak period. Methods: A cohort of 10,741 patients with COVID-19 in the Case Mix Program national clinical audit from February 1 to July 31, 2020, was used. Analyses were stratified by time period (prepeak, peak, and postpeak periods) and geographical region. Logistic regression was used to estimate adjusted differences in 28-day in-hospital mortality between periods. Measurements and Main Results: Admissions to ICUs peaked almost simultaneously across regions but varied 4.6-fold in magnitude. Compared with patients admitted in the prepeak period, patients admitted in the postpeak period were slightly younger but with higher degrees of dependency and comorbidity on admission to ICUs and more deranged first-24-hours physiology. Despite this, receipt of invasive ventilation and renal replacement therapy decreased, and adjusted 28-day in-hospital mortality was reduced by 11.8% (95% confidence interval, 8.7%–15.0%). Many variables exhibited u-shaped or n-shaped curves during the peak. Conclusions: The population of patients with COVID-19 admitted to ICUs, and the processes of care in ICUs, changed over the first wave of the epidemic. After adjustment for important risk factors, there was a substantial improvement in patient outcomes.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

          Summary Background In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. Methods In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. Findings Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. Interpretation The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. Funding National Key R&D Program of China.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute respiratory distress syndrome: the Berlin Definition.

              The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                American Journal of Respiratory and Critical Care Medicine
                Am J Respir Crit Care Med
                American Thoracic Society
                1073-449X
                1535-4970
                December 11 2020
                Affiliations
                [1 ]Intensive Care National Audit and Research Centre, 14207, London, United Kingdom of Great Britain and Northern Ireland
                [2 ]Intensive Care National Audit and Research Centre, 14207, Napier House, 24 High Holborn, London, United Kingdom of Great Britain and Northern Ireland
                [3 ]Guy's and Saint Thomas' NHS Foundation Trust, 8945, Intensive Care Medicine, London, United Kingdom of Great Britain and Northern Ireland
                [4 ]King's College London, 4616, School of Immunology and Microbial Sciences, London, United Kingdom of Great Britain and Northern Ireland
                [5 ]Intensive Care National Audit and Research Centre, 14207, Intensive Care National Audit & Research Centre, London, United Kingdom of Great Britain and Northern Ireland
                [6 ]Intensive Care National Audit and Research Centre, 14207, London, United Kingdom of Great Britain and Northern Ireland;
                Article
                10.1164/rccm.202008-3212OC
                dd9c7112-eb2d-4264-b407-890c010acb45
                © 2020
                History

                Comments

                Comment on this article