14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Modifiable Gene Expression in Mice: Kidney-Specific Deletion of a Target Gene via the Cre-loxP System

      ,
      Nephron Experimental Nephrology
      S. Karger AG

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the advent of gene-targeting in mouse embryonic stem (ES) cells, the use of knockout mice to study the physiological effects of loss of gene function has become increasingly prevalent. However, there are several drawbacks with conventional gene-targeting approaches which may make phenotyping of the resultant mice difficult, if not, impossible. Conventional gene-targeting results in the loss of function of the targeted gene in all cells and tissues, which can be problematic for genes which are required developmentally, which exhibit a wide tissue-specific expression pattern, or are part of complex paracrine systems. As with mice that lack the angiotensinogen or endothelin-1 gene, loss of gene function may lead to a lethal phenotype which can be manifested during embryonic development, at birth or postnatally. These limitations could potentially be circumvented by using a system in which the loss of gene function is placed under spatial and/or temporal control. We will discuss how the cre-loxP recombinase system can be applied to delete a gene in a tissue- and developmentally regulated fashion.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Subregion- and cell type-restricted gene knockout in mouse brain.

          Using the phage P1-derived Cre/loxP recombination system, we have developed a method to create mice in which the deletion (knockout) of virtually any gene of interest is restricted to a subregion or a specific cell type in the brain such as the pyramidal cells of the hippocampal CA1 region. The Cre/loxP recombination-based gene deletion appears to require a certain level of Cre protein expression. The brain subregional restricted gene knockout should allow a more precise analysis of the impact of a gene mutation on animal behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis.

            The neuron-restrictive silencer factor NRSF (also known as REST and XBR) can silence transcription from neuronal promoters in non-neuronal cell lines, but its function during normal development is unknown. In mice, a targeted mutation of Rest, the gene encoding NRSF, caused derepression of neuron-specific tubulin in a subset of non-neural tissues and embryonic lethality. Mosaic inhibition of NRSF in chicken embryos, using a dominant-negative form of NRSF, also caused derepression of neuronal tubulin, as well as of several other neuronal target genes, in both non-neural tissues and central nervous system neuronal progenitors. These results indicate that NRSF is required to repress neuronal gene expression in vivo, in both extra-neural and undifferentiated neural tissue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1.

              The endothelin-1 (ET-1) gene was disrupted in mouse embryonic stem cells by homologous recombination to generate mice deficient in ET-1. These ET-1-/- homozygous mice die of respiratory failure at birth and have morphological abnormalities of the pharyngeal-arch-derived craniofacial tissues and organs. ET-1+/- heterozygous mice, which produce lower levels of ET-1 than wild-type mice, develop elevated blood pressure. These results suggest that ET-1 is essential for normal mouse development and may also play a physiological role in cardiovascular homeostasis.
                Bookmark

                Author and article information

                Journal
                Nephron Experimental Nephrology
                Nephron Exp Nephrol
                S. Karger AG
                1660-2129
                December 1 1998
                November 6 1998
                : 6
                : 6
                : 568-575
                Article
                10.1159/000020573
                738282f7-9256-46c2-8745-de6ea1a8a222
                © 1998

                https://www.karger.com/Services/SiteLicenses

                https://www.karger.com/Services/SiteLicenses

                History

                Comments

                Comment on this article