11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae)

      American journal of botany

      Botanical Society of America

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents.

          Heterosis is the phenomenon whereby the progeny of particular inbred lines have enhanced agronomic performance relative to both parents. Although several hypotheses have been proposed to explain this fundamental biological phenomenon, the responsible molecular mechanisms have not been determined. The maize inbred lines B73 and Mo17 produce a heterotic F1 hybrid. Global patterns of gene expression were compared in seedlings of these three genotypes by using a microarray that contains 13,999 cDNAs. Using an estimated 15% false discovery rate as a cutoff, 1,367 ESTs (9.8%) were identified as being significantly differentially expressed among genotypes. All possible modes of gene action were observed, including additivity, high- and low-parent dominance, underdominance, and overdominance. The largest proportion of the ESTs (78%; 1,062 of 1,367) exhibited expression patterns that are not statistically distinguishable from additivity. Even so, 22% of the differentially regulated ESTs exhibited nonadditive modes of gene expression. Classified on the basis of significant pairwise comparisons of genotype means, 181 of these 305 nonadditive ESTs exhibited high-parent dominance and 23 exhibited low-parent dominance. In addition, 44 ESTs exhibited underdominance or overdominance. These findings are consistent with the hypothesis that multiple molecular mechanisms, including overdominance, contribute to heterosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tackling the population genetics of clonal and partially clonal organisms.

            Many clonal organisms experience occasional events of sexual recombination, with profound consequences for their population dynamics and evolutionary trajectories. With the recent development of polymorphic genetic markers and new statistical methods, we now have an unprecedented ability to detect recombination in organisms that are thought to reproduce strictly, or essentially asexually. However, it is not always obvious which methodology to apply. Consequently, biologists might decide how to analyse their data without clear guidelines. Here, we discuss the available methods, focusing on those best suited when working with limited genetic information, such as a few genetic markers or DNA sequences. We conclude by commenting on the prospects offered by some recent conceptual advances and the access to high throughput technologies in an increasing number of model organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apomixis: a developmental perspective.

              The term apomixis encompasses a suite of processes whereby seeds form asexually in plants. In contrast to sexual reproduction, seedlings arising from apomixis retain the genotype of the maternal parent. The transfer of apomixis and its effective utilization in crop plants (where it is largely absent) has major advantages in agriculture. The hallmark components of apomixis include female gamete formation without meiosis (apomeiosis), fertilization-independent embryo development (parthenogenesis), and developmental adaptations to ensure functional endosperm formation. Understanding the molecular mechanisms underlying apomixis, a developmentally fascinating phenomenon in plants, is critical for the successful induction and utilization of apomixis in crop plants. This review draws together knowledge gained from analyzing ovule, embryo, and endosperm development in sexual and apomictic plants. It consolidates the view that apomixis and sexuality are closely interrelated developmental pathways where apomixis can be viewed as a deregulation of the sexual process in both time and space.
                Bookmark

                Author and article information

                Journal
                10.3732/ajb.1000188

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article