29
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Effect of irbesartan on the antioxidant defence system and nitric oxide release in diabetic rat kidney.

      American journal of nephrology
      Angiotensin II Type 1 Receptor Blockers, pharmacology, therapeutic use, Animals, Biphenyl Compounds, Diabetes Mellitus, Experimental, drug therapy, metabolism, Diabetic Nephropathies, prevention & control, Kidney, drug effects, Male, Nitric Oxide, Oxidative Stress, Rats, Rats, Wistar, Tetrazoles

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased oxidative stress is involved in the aetiology of diabetic nephropathy, and angiotensin II is reported to play a considerable role in the development of renal damage in diabetic kidney. Angiotensin antagonism can slow the progression of renal impairment in diabetes. The present study was thus designed to examine the effect of an angiotensin II type 1 (AT1) receptor antagonist, irbesartan on renal function, oxidative stress and nitric oxide (NO) release in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by a single intraperitoneal injection of streptozotocin (65 mg/kg) in rats. After 4 weeks of STZ injection, rats were divided into four groups: the control rats, diabetic rats and diabetic rats treated with irbesartan (25 and 50 mg/kg, orally) respectively till 8 weeks starting from 4 weeks after STZ injection. Renal function was assessed by creatinine, blood urea nitrogen, creatinine clearance and urea clearance. Oxidative stress was measured by renal malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase. We also measured renal nitrite levels. At the end of the 8th week, diabetic rats exhibited renal dysfunction as evidenced by reduced creatinine and urea clearance along with enhanced albumin excretion rate as compared with control rats. Biochemical analysis of kidneys revealed a marked increase in oxidative stress demonstrated by increased lipid peroxidation and decreased activities of key antioxidant enzymes, GSH, SOD and catalase in diabetic rats. NO release was also significantly higher in diabetic rats than controls. Chronic treatment with irbesartan in diabetic rats significantly attenuated both renal dysfunction and oxidative stress along with increased NO levels as compared with untreated diabetic rats. The kidneys of diabetic rats showed morphological changes such as hyaline casts, glomerular thickening and moderate interstitial fibrosis and arteriolopathy, whereas irbesartan administration markedly prevented diabetic-induced renal morphological alterations. The present study suggests that oxidative stress/nitrosative stress is increased in the diabetic kidney and AT1 receptor blockade can prevent these changes. The results also suggest that in STZ-induced diabetic rats, the protective action of irbesartan might be mediated, at least in part, by its effect on tissue oxidant/antioxidant status. 2004 S. Karger AG, Basel

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.

          Microalbuminuria and hypertension are risk factors for diabetic nephropathy. Blockade of the renin-angiotensin system slows the progression to diabetic nephropathy in patients with type 1 diabetes, but similar data are lacking for hypertensive patients with type 2 diabetes. We evaluated the renoprotective effect of the angiotensin-II-receptor antagonist irbesartan in hypertensive patients with type 2 diabetes and microalbuminuria. A total of 590 hypertensive patients with type 2 diabetes and microalbuminuria were enrolled in this multinational, randomized, double-blind, placebo-controlled study of irbesartan, at a dose of either 150 mg daily or 300 mg daily, and were followed for two years. The primary outcome was the time to the onset of diabetic nephropathy, defined by persistent albuminuria in overnight specimens, with a urinary albumin excretion rate that was greater than 200 microg per minute and at least 30 percent higher than the base-line level. The base-line characteristics in the three groups were similar. Ten of the 194 patients in the 300-mg group (5.2 percent) and 19 of the 195 patients in the 150-mg group (9.7 percent) reached the primary end point, as compared with 30 of the 201 patients in the placebo group (14.9 percent) (hazard ratios, 0.30 [95 percent confidence interval, 0.14 to 0.61; P< 0.001] and 0.61 [95 percent confidence interval, 0.34 to 1.08; P=0.081 for the two irbesartan groups, respectively). The average blood pressure during the course of the study was 144/83 mm Hg in the placebo group, 143/83 mm Hg in the 150-mg group, and 141/83 mm Hg in the 300-mg group (P=0.004 for the comparison of systolic blood pressure between the placebo group and the combined irbesartan groups). Serious adverse events were less frequent among the patients treated with irbesartan (P=0.02). Irbesartan is renoprotective independently of its blood-pressure-lowering effect in patients with type 2 diabetes and microalbuminuria.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy.

              Diabetic nephropathy seems to occur as a result of an interaction of metabolic and haemodynamic factors. Glucose dependent pathways are activated within the diabetic kidney. These include increased oxidative stress, renal polyol formation and accumulation of advanced glycated end-products. Haemodynamic factors are also implicated in the pathogenesis of diabetic nephropathy and include increased systemic and intraglomerular pressure and activation of various vasoactive hormone pathways including the renin-angiotensin system and endothelin. These haemodynamic pathways, independently and with metabolic pathways, activate intracellular second messengers such as protein kinase C and MAP kinase, nuclear transcription factors such as NF-kappaB and various growth factors such as the prosclerotic cytokine, TGF-beta and the angiogenic, permeability enhancing growth factor, VEGF. These pathways ultimately lead to increased renal albumin permeability and extracellular matrix accumulation which results in increasing proteinuria, glomerulosclerosis and tubulointerstitial fibrosis. Therapeutic strategies involved in the management and prevention of diabetic nephropathy include currently available treatments such as intensified glycaemic control and antihypertensive agents, particularly those which interrupt the renin-angiotensin system. More novel strategies to influence vasoactive hormone action or to inhibit various metabolic pathways such as inhibitors of advanced glycation, specific protein kinase C isoforms and aldose reductase are at present under experimental and clinical investigation. It is predicted that multiple therapies will be required to reduce the progression of diabetic nephropathy.
                Bookmark

                Author and article information

                Comments

                Comment on this article