21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β) have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques.

          Dysregulated extracellular matrix (ECM) metabolism may contribute to vascular remodeling during the development and complication of human atherosclerotic lesions. We investigated the expression of matrix metalloproteinases (MMPs), a family of enzymes that degrade ECM components in human atherosclerotic plaques (n = 30) and in uninvolved arterial specimens (n = 11). We studied members of all three MMP classes (interstitial collagenase, MMP-1; gelatinases, MMP-2 and MMP-9; and stromelysin, MMP-3) and their endogenous inhibitors (TIMPs 1 and 2) by immunocytochemistry, zymography, and immunoprecipitation. Normal arteries stained uniformly for 72-kD gelatinase and TIMPs. In contrast, plaques' shoulders and regions of foam cell accumulation displayed locally increased expression of 92-kD gelatinase, stromelysin, and interstitial collagenase. However, the mere presence of MMP does not establish their catalytic capacity, as the zymogens lack activity, and TIMPs may block activated MMPs. All plaque extracts contained activated forms of gelatinases determined zymographically and by degradation of 3H-collagen type IV. To test directly whether atheromata actually contain active matrix-degrading enzymes in situ, we devised a method which allows the detection and microscopic localization of MMP enzymatic activity directly in tissue sections. In situ zymography revealed gelatinolytic and caseinolytic activity in frozen sections of atherosclerotic but not of uninvolved arterial tissues. The MMP inhibitors, EDTA and 1,10-phenanthroline, as well as recombinant TIMP-1, reduced these activities which colocalized with regions of increased immunoreactive MMP expression, i.e., the shoulders, core, and microvasculature of the plaques. Focal overexpression of activated MMP may promote destabilization and complication of atherosclerotic plaques and provide novel targets for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles.

            Vascular smooth muscle cells (VSMCs) are the stromal cells of the vascular wall, continually exposed to mechanical signals and biochemical components generated in the blood compartment. They are involved in all the physiological functions and the pathological changes taking place in the vascular wall. Owing to their contractile tonus, VSMCs of resistance vessels participate in the regulation of blood pressure and also in hypertension. VSMCs of conduit arteries respond to hypertension-induced increases in wall stress by an increase in cell protein synthesis (hypertrophy) and extracellular matrix secretion. These responses are mediated by complex signalling pathways, mainly involving RhoA and extracellular signal-regulated kinase1/2. Serum response factor and miRNA expression represent main mechanisms controlling the pattern of gene expression. Ageing also induces VSMC phenotypic modulation that could have influence on cell senescence and loss of plasticity and reprogramming. In the early stages of human atheroma, VSMCs support the lipid overload. Endocytosis/phagocytosis of modified low-density lipoproteins, free cholesterol, microvesicles, and apoptotic cells by VSMCs plays a major role in the progression of atheroma. Migration and proliferation of VSMCs in the intima also participate in plaque progression. The medial VSMC is the organizer of the inwardly directed angiogenic response arising from the adventitia by overexpressing vascular endothelial growth factor in response to lipid-stimulated peroxisome proliferator-activated receptor-γ, and probably also the organizer of the adventitial immune response by secreting chemokines. VSMCs are also involved in the response to proteolytic injury via their ability to activate blood-borne proteases, to secrete antiproteases, and to clear protease/antiprotease complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial.

              To test formally the inflammatory hypothesis of atherothrombosis, an agent is needed that reduces inflammatory biomarkers such as C-reactive protein, interleukin-6, and fibrinogen but that does not have major effects on lipid pathways associated with disease progression. We conducted a double-blind, multinational phase IIb trial of 556 men and women with well-controlled diabetes mellitus and high cardiovascular risk who were randomly allocated to subcutaneous placebo or to subcutaneous canakinumab at doses of 5, 15, 50, or 150 mg monthly and followed over 4 months. Compared with placebo, canakinumab had modest but nonsignificant effects on the change in hemoglobin A1c, glucose, and insulin levels. No effects were seen for low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or non-high-density lipoprotein cholesterol, although triglyceride levels increased ≈10% in the 50-mg (P=0.02) and 150-mg (P=0.03) groups. By contrast, the median reductions in C-reactive protein at 4 months were 36.4%, 53.0%, 64.6%, and 58.7% for the 5-, 15-, 50-, and 150-mg canakinumab doses, respectively, compared with 4.7% for placebo (all P values ≤0.02). Similarly, the median reductions in interleukin-6 at 4 months across the canakinumab dose range tested were 23.9%, 32.5%, 47.9%, and 44.5%, respectively, compared with 2.9% for placebo (all P≤0.008), and the median reductions in fibrinogen at 4 months were 4.9%, 11.7%, 18.5%, and 14.8%, respectively, compared with 0.4% for placebo (all P values ≤0.0001). Effects were observed in women and men. Clinical adverse events were similar in the canakinumab and placebo groups. Canakinumab, a human monoclonal antibody that neutralizes interleukin-1β, significantly reduces inflammation without major effect on low-density lipoprotein cholesterol or high-density lipoprotein cholesterol. These phase II trial data support the use of canakinumab as a potential therapeutic method to test directly the inflammatory hypothesis of atherosclerosis.
                Bookmark

                Author and article information

                Journal
                PLoS ONE
                PloS one
                Public Library of Science (PLoS)
                1932-6203
                1932-6203
                2016
                : 11
                : 3
                Affiliations
                [1 ] Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
                Article
                PONE-D-15-46613
                10.1371/journal.pone.0152474
                4816548
                27032103
                8ee9a97d-8da7-4600-959e-a6d3f479f7c1
                History

                Comments

                Comment on this article