37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanisms of cutaneous toxicities to EGFR inhibitors

      Nature reviews. Cancer
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The cornified envelope: a model of cell death in the skin.

          The epidermis functions as a barrier against the environment by means of several layers of terminally differentiated, dead keratinocytes - the cornified layer, which forms the endpoint of epidermal differentiation and death. The cornified envelope replaces the plasma membrane of differentiating keratinocytes and consists of keratins that are enclosed within an insoluble amalgam of proteins, which are crosslinked by transglutaminases and surrounded by a lipid envelope. New insights into the molecular mechanisms and the physiological endpoints of cornification are increasing our understanding of the pathological defects of this unique form of programmed cell death, which is associated with barrier malfunctions and ichthyosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer.

            The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor of the ErbB family that is abnormally activated in many epithelial tumors. Receptor activation leads to recruitment and phosphorylation of several downstream intracellular substrates, leading to mitogenic signaling and other tumor-promoting cellular activities. In human tumors, receptor overexpression correlates with a more aggressive clinical course. Taken together, these observations indicate that the EGFR is a promising target for cancer therapy. Monoclonal antibodies directed at the ligand-binding extracellular domain and low-molecular weight inhibitors of the receptor's tyrosine kinase are currently in advanced stages of clinical development. These agents prevent ligand-induced receptor activation and downstream signaling, which results in cell cycle arrest, promotion of apoptosis, and inhibition of angiogenesis. They also enhance the antitumor effects of chemotherapy and radiation therapy. In patients, anti-EGFR agents can be given safely at doses that fully inhibit receptor signaling, and single-agent activity has been observed against a variety of tumor types, including colon carcinoma, non-small-cell lung cancer, head and neck cancer, ovarian carcinoma, and renal cell carcinoma. Although antitumor activity is significant, responses have been seen in only a minority of the patients treated. In some clinical trials, anti-EGFR agents enhanced the effects of conventional chemotherapy and radiation therapy. Ongoing research efforts are directed at the selection of patients with EGFR-dependent tumors, identification of the differences among the various classes of agents, and new clinical development strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model.

              Here we report that epidermal keratinocytes in psoriatic lesions are characterized by activated Stat3. Transgenic mice with keratinocytes expressing a constitutively active Stat3 (K5.Stat3C mice) develop a skin phenotype either spontaneously, or in response to wounding, that closely resembles psoriasis. Keratinocytes from K5.Stat3C mice show upregulation of several molecules linked to the pathogenesis of psoriasis. In addition, the development of psoriatic lesions in K5.Stat3C mice requires cooperation between Stat3 activation in keratinocytes and activated T cells. Finally, abrogation of Stat3 function by a decoy oligonucleotide inhibits the onset and reverses established psoriatic lesions in K5.Stat3C mice. Thus, targeting Stat3 may be potentially therapeutic in the treatment of psoriasis.
                Bookmark

                Author and article information

                Journal
                10.1038/nrc1970
                http://www.springer.com/tdm

                Comments

                Comment on this article