954
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formation of Se (0) Nanoparticles by Duganella sp. andAgrobacterium sp. isolated from Se-laden soil of North-East Punjab, India

      Microbial Cell Factories
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

          Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A bacterial process for selenium nanosphere assembly.

            During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this protein have demonstrated that it is up-regulated and secreted in response to increasing selenite concentrations. The protein was purified from Se nanospheres, and peptide fragments from a tryptic digest were used to identify the gene in the draft T. selenatis genome. A matched open reading frame was located, encoding a protein with a calculated mass of 94.5 kDa. N-terminal sequence analysis of the mature protein revealed no cleavable signal peptide, suggesting that the protein is exported directly from the cytoplasm. The protein has been called Se factor A (SefA), and homologues of known function have not been reported previously. The sefA gene was cloned and expressed in Escherichia coli, and the recombinant His-tagged SefA purified. In vivo experiments demonstrate that SefA forms larger (approximately 300 nm) Se nanospheres in E. coli when treated with selenite, and these are retained within the cell. In vitro assays demonstrate that the formation of Se nanospheres upon the reduction of selenite by glutathione are stabilized by the presence of SefA. The role of SefA in selenium nanosphere assembly has potential for exploitation in bionanomaterial fabrication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria.

              Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, approximately 300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H(2)Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.
                Bookmark

                Author and article information

                Journal
                10.1186/1475-2859-11-64

                Comments

                Comment on this article