10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Recent Concepts in the Molecular Biology of the Peritoneal Membrane – Implications for More Biocompatible Dialysis Solutions

      , ,
      Blood Purification
      S. Karger AG

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper reviews some important recent findings on the molecular biology of the peritoneal membrane. It attempts to correlate in vitro and in vivo experimental results with the possible clinical consequences. The most common functional alteration during long-term CAPD is increased peritoneal small-solute transport rate, resulting in impaired ultrafiltration and decreased dialysis efficiency. This contribution first discusses the most relevant advances in the biochemistry and molecular biology of the peritoneal membrane following peritonitis and as consequence of the continuous exposure to unphysiological dialysis fluids. In a second part the preliminary experimental and clinical experience with more biocompatible fluids is summarized. The most relevant structural and functional alterations of the membrane following repeated peritonitis is the consequence of the response of the peritoneum to infective organisms involving the inflammatory cytokines and the interaction between membrane resident cell populations: macrophages, mesothelial cells and fibroblasts. In this setting, human biopsy studies and animal experiments have identified an increase in the peritoneal-associated vasculature, which seems to be the primary cause of increased solute transport. The structural and functional alterations in the membrane in long-term peritoneal dialysis are thought to be the consequence of the toxicity of glucose, either directly or indirectly through the generation of glucose degradation products or the formation of advanced glycation end-products. In particular, an important role for vascular endothelial growth factor and nitric oxide as downstream mediators of the alterations has been suggested. Finally, the last part of this paper reviews the actual and future research aimed at an amelioration of the biocompatibility of the dialysis fluids. Replacing glucose by other osmotic agents, changing the sterilization process, replacing the lactate buffer by bicarbonate, blocking the formation of reactive carbonyl products and of the neoangiogenesis are the most promising changes to enhance the biocompatibility. Finally, gene therapy may in the future have an important contribution. Ex vivo gene therapy involves harvesting peritoneum samples to isolate mesothelial cells that will be genetically modified before re-implantation into the peritoneal cavity.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products.

          Glucose degradation products (GDPs) are cytotoxic in vitro and potentially toxic in vivo during peritoneal dialysis (PD). We are presenting the results of a two-year randomized clinical trial of a new PD fluid, produced in a two-compartment bag and designed to minimize heat-induced glucose degradation while producing a near neutral pH. The effects of the new fluid over two years of treatment on membrane transport characteristics, ultrafiltration (UF) capacity, and effluent markers of peritoneal membrane integrity were investigated and compared with those obtained during treatment with a standard solution. A two-group parallel design with 80 continuous ambulatory peritoneal dialysis patients was used. The patients were randomly assigned to either the new fluid (N = 40) or to a conventional one (N = 40), and were stratified with respect to age, diabetes, and time on PD. Peritoneal transport characteristics were assessed by the Personal Dialysis Capacity (PDCtrade mark) test at 1, 6, 12, 18, and 24 months after inclusion and by weighing the overnight bag daily. Infusion pain and handling were evaluated using a questionnaire. Peritoneal mesothelial and interstitial integrity were evaluated by analyzing overnight effluent dialysate concentrations of CA 125, hyaluronan (HA), procollagen-1-C-terminal peptide (PICP), and procollagen-3-N-terminal peptide (PIIINP) at 1, 6, 12, 18, and 24 months. The handling of the new two-compartment bag was considered easy, and there were no indications of increased discomfort with the new system. Furthermore, no changes in peritoneal fluid or solute transport characteristics were observed during the study period for either fluid, and neither were there any differences with regard to peritonitis incidence. However, significantly higher dialysate CA 125 (73 +/- 41 vs. 25 +/- 18 U/mL), PICP (387 +/- 163 vs. 244 +/- 81 ng/mL), and PIIINP (50 +/- 24 vs. 29 +/- 13 ng/mL) and significantly lower concentrations of HA (395 +/- 185 vs. 530 +/- 298 ng/mL) were observed in the overnight effluent during treatment with the new fluid. We conclude that the new fluid with a higher pH and less GDPs is safe and easy to use and has no negative effects on either the frequency of peritonitis or peritoneal transport characteristics as compared with conventional ones. Our results indicate that the new solution causes less mesothelial and interstitial damage than conventional ones; that is, it may be considered more biocompatible than a number of conventional PD solutions currently in use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis.

            Peritoneal membrane permeability deteriorates in peritoneal dialysis (PD) patients. We test whether glucose degradation products (GDPs) in PD fluids, glyoxal, methylglyoxal and 3-deoxyglucosone, stimulate the production of vascular endothelial growth factor (VEGF), a factor known to enhance vascular permeability and angiogenesis. VEGF increased in cultured rat mesothelial and human endothelial cells exposed to methylglyoxal, but not to glyoxal or 3-deoxyglucosone. VEGF also increased in peritoneal tissue of rats given intraperitoneally methylglyoxal. VEGF and carboxymethyllysine (CML) (formed from GDPs) co-localized immunohistochemically in mesothelial layer and vascular walls of the peritoneal membrane of patients given chronic PD. By contrast, in the peritoneum of non-uremic subjects, VEGF was identified only in vascular walls, in the absence of CML. VEGF production induced by GDPs may play a role in the progressive deterioration of the peritoneal membrane.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Induction of Vascular Endothelial Growth Factor by Tumor Necrosis Factor α in Human Glioma Cells

                Bookmark

                Author and article information

                Journal
                Blood Purification
                Blood Purif
                S. Karger AG
                0253-5068
                1421-9735
                July 1 2003
                2003
                January 22 2003
                : 21
                : 1
                : 14-23
                Article
                10.1159/000067867
                bd00c0ad-b4fb-4239-9555-79ce3694859a
                © 2003

                https://www.karger.com/Services/SiteLicenses

                https://www.karger.com/Services/SiteLicenses

                History

                Comments

                Comment on this article