29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early adaptation to eolian sand dunes by basal amniotes is documented in two Pennsylvanian Grand Canyon trackways

      , ,
      PLOS ONE
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report the discovery of two very early, basal-amniote fossil trackways on the same bedding plane in eolian sandstone of the Pennsylvanian Manakacha Formation in Grand Canyon, Arizona. Trackway 1, which is Chelichnus-like, we interpret to be a shallow undertrackway. It displays a distinctive, sideways-drifting, footprint pattern not previously documented in a tetrapod trackway. We interpret this pattern to record the trackmaker employing a lateral-sequence gait while diagonally ascending a slope of about 20°, thereby reducing the steepness of the ascent. Trackway 2 consists only of aligned sets of claw marks. We interpret this trackway to be a deeper undertrackway, made some hours or days later, possibly by an animal that was conspecific with Trackmaker 1, while walking directly up the slope at a speed of approximately 0.1 m/sec. These trackways are the first tetrapod tracks reported from the Manakacha Formation and the oldest in the Grand Canyon region. The narrow width of both trackways indicates that both trackmakers had relatively small femoral abduction angles and correspondingly relatively erect postures. They represent the earliest known occurrence of dunefield-dwelling amniotes―either basal reptiles or basal synapsids―thereby extending the known utilization of the desert biome by amniotes, as well as the presence of the Chelichnus ichnofacies, by at least eight million years, into the Atokan/Moscovian Age of the Pennsylvanian Epoch. The depositional setting was a coastal-plain, eolian dunefield in which tidal or wadi flooding episodically interrupted eolian processes and buried the dunes in mud.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          A chronology of Paleozoic sea-level changes.

          Sea levels have been determined for most of the Paleozoic Era (542 to 251 million years ago), but an integrated history of sea levels has remained unrealized. We reconstructed a history of sea-level fluctuations for the entire Paleozoic by using stratigraphic sections from pericratonic and cratonic basins. Evaluation of the timing and amplitude of individual sea-level events reveals that the magnitude of change is the most problematic to estimate accurately. The long-term sea level shows a gradual rise through the Cambrian, reaching a zenith in the Late Ordovician, then a short-lived but prominent withdrawal in response to Hirnantian glaciation. Subsequent but decreasingly substantial eustatic highs occurred in the mid-Silurian, near the Middle/Late Devonian boundary, and in the latest Carboniferous. Eustatic lows are recorded in the early Devonian, near the Mississippian/Pennsylvanian boundary, and in the Late Permian. One hundred and seventy-two eustatic events are documented for the Paleozoic, varying in magnitude from a few tens of meters to approximately 125 meters.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A reevaluation of early amniote phylogeny

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Basic types of stratification in small eolian dunes

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                PLOS ONE
                PLoS ONE
                Public Library of Science (PLoS)
                1932-6203
                August 19 2020
                August 19 2020
                : 15
                : 8
                : e0237636
                Article
                10.1371/journal.pone.0237636
                5e3bbaff-3bd4-4a9d-8487-f09d751218e7
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article