24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional expression of the olfactory signaling system in the kidney.

      Proceedings of the National Academy of Sciences of the United States of America
      Adenylate Cyclase, analysis, Animals, GTP-Binding Protein alpha Subunits, Glomerular Filtration Rate, Kidney, chemistry, physiology, Kidney Tubules, Distal, Mice, Mice, Knockout, Olfactory Mucosa, Olfactory Receptor Neurons, Renin, blood, secretion, Signal Transduction

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olfactory-like chemosensory signaling occurs outside of the olfactory epithelium. We find that major components of olfaction, including olfactory receptors (ORs), olfactory-related adenylate cyclase (AC3) and the olfactory G protein (G(olf)), are expressed in the kidney. AC3 and G(olf) colocalize in renal tubules and in macula densa (MD) cells which modulate glomerular filtration rate (GFR). GFR is significantly reduced in AC3(-/-) mice, suggesting that AC3 participates in GFR regulation. Although tubuloglomerular feedback is normal in these animals, they exhibit significantly reduced plasma renin levels despite up-regulation of COX-2 expression and nNOS activity in the MD. Furthermore, at least one member of the renal repertoire of ORs is expressed in a MD cell line. Thus, key components of olfaction are expressed in the renal distal nephron and may play a sensory role in the MD to modulate both renin secretion and GFR.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Combinatorial receptor codes for odors.

          The discriminatory capacity of the mammalian olfactory system is such that thousands of volatile chemicals are perceived as having distinct odors. Here we used a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors. We found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs. Thus, the olfactory system uses a combinatorial receptor coding scheme to encode odor identities. Our studies also indicate that slight alterations in an odorant, or a change in its concentration, can change its "code," potentially explaining how such changes can alter perceived odor quality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Limitations of creatinine as a filtration marker in glomerulopathic patients.

            To determine the reliability of creatinine as a measure of the glomerular filtration rate (GFR), we compared the simultaneous clearance of creatinine to that of three true filtration markers of graded size in 171 patients with various glomerular diseases. Using inulin (radius [rs] = 15 A) as a reference marker, we found that the fractional clearance of 99mTc-DTPA (rs = 4 A) was 1.02 +/- 0.14, while that of a 19 A rs dextran was 0.98 +/- 0.13, with neither value differing from unity. In contrast, the fractional clearance (relative to inulin) of creatinine (rs = 3 A) exceeded unity, averaging 1.64 +/- 0.05 (P less than 0.001), but could be lowered towards unity by acute blockade of tubular creatinine secretion by IV cimetidine. Cross-sectional analysis of all 171 patients revealed fractional creatinine secretion to vary inversely with GFR. This inverse relationship was confirmed also among individual patients with either deteriorating (N = 28) or remitting (N = 26) glomerular disease, who were studied longitudinally. As a result, changes in creatinine relative to inulin clearance were blunted considerably or even imperceptible. We conclude that true filtration markers with rs less than 20 A, including inulin, are unrestricted in glomerular disease, and that creatinine is hypersecreted progressively by remnant renal tubules as the disease worsens. Accordingly, attempts to use creatinine as a marker with which to evaluate or monitor glomerulopathic patients will result in gross and unpredictable overestimates of the GFR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice.

              Cyclic nucleotide-gated ion channels in olfactory sensory neurons (OSNs) are hypothesized to play a critical role in olfaction. However, it has not been demonstrated that the cAMP signaling is required for olfactory-based behavioral responses, and the contributions of specific adenylyl cyclases to olfaction have not been defined. Here, we report the presence of adenylyl cyclases 2, 3, and 4 in olfactory cilia. To evaluate the role of AC3 in olfactory responses, we disrupted the gene for AC3 in mice. Interestingly, electroolfactogram (EOG) responses stimulated by either cAMP- or inositol 1,4,5-triphosphate- (IP3-) inducing odorants were completely ablated in AC3 mutants, despite the presence of AC2 and AC4 in olfactory cilia. Furthermore, AC3 mutants failed several olfaction-based behavioral tests, indicating that AC3 and cAMP signaling are critical for olfactory-dependent behavior.
                Bookmark

                Author and article information

                Comments

                Comment on this article