15
views
0
recommends
+1 Recommend
1 collections
    1
    shares

      Authors - did you know Parasite has been awarded the DOAJ Seal for “best practice in open access publishing”?

      • 3.020 2021 Impact Factor
      • Rapid publication and moderate publication fee
      • Creative Commons license
      • Long articles welcome – no page limits

      Instructions for authors, online submissions and free e-mail alerts all available at parasite-journal.org

      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Molecular dissection of host cell invasion by the apicomplexans: the glideosome.

      Parasite
      Actomyosin, chemistry, physiology, Animals, Apicomplexa, cytology, ultrastructure, Cell Adhesion, Cell Movement, Cytoskeleton, Host-Parasite Interactions, Humans, Membrane Proteins, Molecular Motor Proteins, Protozoan Infections, parasitology, Protozoan Proteins

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gliding motility is an essential and fascinating apicomplexan-typical adaptation to an intracellular lifestyle. Apicomplexan parasites rely on gliding motility for their migration across biological barriers and for host cell invasion and egress. This unusual substratedependent mode of locomotion involves the concerted action of secretory adhesins, a myosin motor, factors regulating actin dynamics and proteases. During invasion, complexes of soluble and transmembrane micronemes proteins (MICs) and rhoptry neck proteins (RONs) are discharged to the apical pole of the parasite, some protein acts as adhesins and bind to host cell receptors whereas others are involved in the moving junction formation. These complexes redistribute towards the posterior pole of the parasite via a physical connection to the parasite actomyosin system and are eventually released from the parasite surface by the action of parasite proteases.

          Related collections

          Author and article information

          Comments

          Comment on this article