27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711).

      American journal of nephrology
      Animals, Diabetic Nephropathies, blood, drug therapy, prevention & control, Female, Glycosylation End Products, Advanced, antagonists & inhibitors, Lysine, analogs & derivatives, Mice, Mice, Mutant Strains, Thiazoles, administration & dosage, therapeutic use

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alagebrium (ALT-711) has been shown to improve renal dysfunction in animal models of diabetes. To test its effects in diabetic nephropathy (DN), ALT-711 was administered (1 mg/kg daily i.p.) to 9-week-old female db/db mice (n = 15, group A1) for 3 weeks and to 3-month-old (n = 15, group A2), 7-month-old (n = 7, group A3), and 12-month-old (n = 5, group A4) female db/db mice for 12 weeks, while a similar number of diabetic and nondiabetic mice were used as controls. The epsilonN-carboxymethyllysine (CML) levels in serum, urine, skin, and kidney tissue were measured by enzyme-linked immunosorbent assay. The renal morphometric parameters were assessed by electron and light microscopy. By the 3rd week of treatment, the serum CML level decreased by 41%, and the urinary CML concentration increased by 138% from baseline, while the urinary albumin/creatinine ratio was lower (p < 0.05) in diabetic and nondiabetic group A1 mice. After 3 months of treatment, serum, skin, and kidney CML levels and urinary albumin/creatinine ratio were lower (p < 0.05) and the urinary CML levels higher (p < 0.05) in treated group A2, A3, and A4 animals compared with groups which received phosphate-buffered saline, with a similar pattern observed in nondiabetic mice. The renal morphological parameters characteristic of DN decreased in treated compared with untreated mice. Alagebrium may prevent, delay, and/or reverse established DN in db/db mice by reducing the systemic advanced glycation end product pools and facilitating the urinary excretion of advanced glycation end products. Copyright (c) 2006 S. Karger AG, Basel.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes.

          The formation of advanced glycation end products (AGEs) on extracellular matrix components leads to accelerated increases in collagen cross linking that contributes to myocardial stiffness in diabetes. This study determined the effect of the crosslink breaker, ALT-711 on diabetes-induced cardiac disease. Streptozotocin diabetes was induced in Sprague-Dawley rats for 32 weeks. Treatment with ALT-711 (10 mg/kg) was initiated at week 16. Diabetic hearts were characterized by increased left ventricular (LV) mass and brain natriuretic peptide (BNP) expression, decreased LV collagen solubility, and increased collagen III gene and protein expression. Diabetic hearts had significant increases in AGEs and increased expression of the AGE receptors, RAGE and AGE-R3, in association with increases in gene and protein expression of connective tissue growth factor (CTGF). ALT-711 treatment restored LV collagen solubility and cardiac BNP in association with reduced cardiac AGE levels and abrogated the increase in RAGE, AGE-R3, CTGF, and collagen III expression. The present study suggests that AGEs play a central role in many of the alterations observed in the diabetic heart and that cleavage of preformed AGE crosslinks with ALT-711 leads to attenuation of diabetes-associated cardiac abnormalities in rats. This provides a potential new therapeutic approach for cardiovascular disease in human diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of advanced glycation end products in diabetic nephropathy.

            Nonenzymatic reactions between sugars and the free amino groups on proteins, lipids, and nucleic acids result in molecular dysfunction through the formation of advanced glycation end products (AGE). AGE have a wide range of chemical, cellular, and tissue effects through changes in charge, solubility, and conformation that characterize molecular senescence. AGE also interact with specific receptors and binding proteins to influence the expression of growth factors and cytokines, including TGF-beta1 and CTGF, thereby regulating the growth and proliferation of the various renal cell types. It seems that many of the pathogenic changes that occur in diabetic nephropathy may be induced by AGE. Drugs that either inhibit the formation of AGE or break AGE-induced cross-links have been shown to be renoprotective in experimental models of diabetic nephropathy. AGE are able to stimulate directly the production of extracellular matrix and inhibit its degradation. AGE modification of matrix proteins is also able to disrupt matrix-matrix and matrix-cell interactions, contributing to their profibrotic action. In addition, AGE significantly interact with the renin-angiotensin system. Recent studies have suggested that angiotensin-converting enzyme inhibitors are able to reduce the accumulation of AGE in diabetes, possibly via the inhibition of oxidative stress. This interaction may be a particularly important pathway for the development of AGE-induced damage, as it also can be attenuated by antioxidant therapy. In addition to being a consequence of oxidative stress, it is now clear that AGE can promote the generation of reactive oxygen species. It is likely that therapies that inhibit the formation of AGE will form an important part of future therapy in patients with diabetes, acting synergistically with conventional approaches to prevent diabetic renal injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Breakers of advanced glycation end products restore large artery properties in experimental diabetes.

              Glucose and other reducing sugars react with proteins by a nonenzymatic, posttranslational modification process called nonenzymatic glycation. The formation of advanced glycation end products (AGEs) on connective tissue and matrix components accounts largely for the increase in collagen crosslinking that accompanies normal aging and which occurs at an accelerated rate in diabetes, leading to an increase in arterial stiffness. A new class of AGE crosslink "breakers" reacts with and cleaves these covalent, AGE-derived protein crosslinks. Treatment of rats with streptozotocin-induced diabetes with the AGE-breaker ALT-711 for 1-3 weeks reversed the diabetes-induced increase of large artery stiffness as measured by systemic arterial compliance, aortic impedance, and carotid artery compliance and distensibility. These findings will have considerable implications for the treatment of patients with diabetes-related complications and aging.
                Bookmark

                Author and article information

                Comments

                Comment on this article