26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation

      Redox Biology
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage.

          Nitric oxide (NO.) is thought to protect against the damaging effects of myocardial ischemia-reperfusion injury, whereas xanthine oxidoreductase (XOR) normally causes damage through the generation of reactive oxygen species. In the heart, inorganic nitrite (NO(2)(-)) has the potential to act as an endogenous store of NO., liberated specifically during ischemia. Using a detection method that we developed, we report that under ischemic conditions both rat and human homogenized myocardium and the isolated perfused rat heart (Langendorff preparation) generate NO. from NO(2)(-) in a reaction that depends on XOR activity. Functional studies of rat hearts in the Langendorff apparatus showed that nitrite (10 and 100 microM) reduced infarct size from 47.3 +/- 2.8% (mean percent of control +/- SEM) to 17.9 +/- 4.2% and 17.4 +/- 1.0%, respectively (P < 0.001), and was associated with comparable improvements in recovery of left ventricular function. This protective effect was completely blocked by the NO. scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide (carboxy-PTIO). In summary, the generation of NO. from NO(2)(-), by XOR, protects the myocardium from ischemia-reperfusion injury. Hence, if XOR is presented with NO(2)(-) as an alternative substrate, the resultant effects of its activity may be protective, by means of its production of NO. , rather than damaging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen peroxide is the major oxidant product of xanthine oxidase.

            Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) in inflammatory disease. Focus, however, has centered almost exclusively on XO-derived superoxide (O(2)(*-)), whereas direct H(2)O(2) production from XO has been less well investigated. Therefore, we examined the relative quantities of O(2)(*-) and H(2)O(2) produced by XO under a range (1-21%) of O(2) tensions. At O(2) concentrations between 10 and 21%, H(2)O(2) accounted for approximately 75% of ROS production. As O(2) concentrations were lowered, there was a concentration-dependent increase in H(2)O(2) formation, accounting for 90% of ROS production at 1% O(2). Alterations in pH between 5.5 and 7.4 did not affect the relative proportions of H(2)O(2) and O(2)(*-) formation. Immobilization of XO, by binding to heparin-Sepharose, further enhanced relative H(2)O(2) production by approximately 30%, under both normoxic and hypoxic conditions. Furthermore, XO bound to glycosaminoglycans on the apical surface of bovine aortic endothelial cells demonstrated a similar ROS production profile. These data establish H(2)O(2) as the dominant (70-95%) reactive product produced by XO under clinically relevant conditions and emphasize the importance of H(2)O(2) as a critical factor when examining the contributory roles of XO-catalyzed ROS in inflammatory processes as well as cellular signaling. Published by Elsevier Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allopurinol improves endothelial dysfunction in chronic heart failure.

              Increased oxidative stress in chronic heart failure is thought to contribute to endothelial dysfunction. Xanthine oxidase produces oxidative stress and therefore we examined whether allopurinol improved endothelial dysfunction in chronic heart failure. We performed a randomized, placebo-controlled, double-blind crossover study on 11 patients with New York Heart Association class II-III chronic heart failure, comparing 300 mg allopurinol daily (1 month) versus placebo. Endothelial function was assessed by standard forearm venous occlusion plethysmography with acetylcholine, nitroprusside, and verapamil. Plasma malondialdehyde levels were also compared to assess significant changes in oxidative stress. Allopurinol significantly increased the forearm blood flow response to acetylcholine (percentage change in forearm blood flow [mean+/-SEM]: 181+/-19% versus 120+/-22% allopurinol versus placebo; P=0.003). There were no significant differences in the forearm blood flow changes between the placebo and allopurinol treatment arms with regard to sodium nitroprusside or verapamil. Plasma malondialdehyde was significantly reduced with allopurinol treatment (346+/-128 nmol/L versus 461+/-101 nmol/L, allopurinol versus placebo; P=0.03), consistent with reduced oxidative stress with allopurinol therapy. We have shown that allopurinol improves endothelial dysfunction in chronic heart failure. This raises the distinct possibility that allopurinol might reduce cardiovascular events and even improve exercise capacity in chronic heart failure.
                Bookmark

                Author and article information

                Journal
                10.1016/j.redox.2013.05.002
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article