30
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myeloid cell leukemia-1 (Mcl-1) is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA)-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB) ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA), molecular dynamics (MD), and nuclear magnetic resonance (NMR), respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors.

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Virtual screening of chemical libraries.

          Virtual screening uses computer-based methods to discover new ligands on the basis of biological structures. Although widely heralded in the 1970s and 1980s, the technique has since struggled to meet its initial promise, and drug discovery remains dominated by empirical screening. Recent successes in predicting new ligands and their receptor-bound structures, and better rates of ligand discovery compared to empirical screening, have re-ignited interest in virtual screening, which is now widely used in drug discovery, albeit on a more limited scale than empirical screening.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement.

            Normal mode analysis (NMA) is a powerful tool for predicting the possible movements of a given macromolecule. It has been shown recently that half of the known protein movements can be modelled by using at most two low-frequency normal modes. Applications of NMA cover wide areas of structural biology, such as the study of protein conformational changes upon ligand binding, membrane channel opening and closure, potential movements of the ribosome, and viral capsid maturation. Another, newly emerging field of NMA is related to protein structure determination by X-ray crystallography, where normal mode perturbed models are used as templates for diffraction data phasing through molecular replacement (MR). Here we present ElNémo, a web interface to the Elastic Network Model that provides a fast and simple tool to compute, visualize and analyse low-frequency normal modes of large macro-molecules and to generate a large number of different starting models for use in MR. Due to the 'rotation-translation-block' (RTB) approximation implemented in ElNémo, there is virtually no upper limit to the size of the proteins that can be treated. Upon input of a protein structure in Protein Data Bank (PDB) format, ElNémo computes its 100 lowest-frequency modes and produces a comprehensive set of descriptive parameters and visualizations, such as the degree of collectivity of movement, residue mean square displacements, distance fluctuation maps, and the correlation between observed and normal-mode-derived atomic displacement parameters (B-factors). Any number of normal mode perturbed models for MR can be generated for download. If two conformations of the same (or a homologous) protein are available, ElNémo identifies the normal modes that contribute most to the corresponding protein movement. The web server can be freely accessed at http://igs-server.cnrs-mrs.fr/elnemo/index.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Process of Structure-Based Drug Design

              The field of structure-based drug design is a rapidly growing area in which many successes have occurred in recent years. The explosion of genomic, proteomic, and structural information has provided hundreds of new targets and opportunities for future drug lead discovery. This review summarizes the process of structure-based drug design and includes, primarily, the choice of a target, the evaluation of a structure of that target, the pivotal questions to consider in choosing a method for drug lead discovery, and evaluation of the drug leads. Key principles in the field of structure-based drug design will be illustrated through a case study that explores drug design for AmpC beta-lactamase.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug design, development and therapy
                Informa UK Limited
                1177-8881
                1177-8881
                2017
                : 11
                Affiliations
                [1 ] Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.
                Article
                dddt-11-1803
                10.2147/DDDT.S133127
                5484510
                28684899
                9e95a817-0017-4307-8432-ac58a65d79b6
                History

                Mcl-1,NMR,molecular dynamics,normal modes,virtual screening
                Mcl-1, NMR, molecular dynamics, normal modes, virtual screening

                Comments

                Comment on this article