42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synaptic plasticity: LTP and LTD

      Current Opinion in Neurobiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression.

          Long-term potentiation (LTP) is a synaptic mechanism thought to be involved in learning and memory. Long-term depression (LTD), an activity-dependent decrease in synaptic efficacy, may be an equally important mechanism which permits neural networks to store information more effectively. One form of LTD that has been observed in the hippocampus requires activation of postsynaptic NMDA (N-methyl-D-aspartate) receptors, a change in postsynaptic calcium concentration, and activation of postsynaptic serine/threonine protein phosphatase 1 (PP1) or 2A (PP2A). The mechanism by which PP1 or PP2A is regulated by synaptic activity is unclear because these protein phosphatases are not directly influenced by calcium concentration. LTD induction may require activation of a more complex protein phosphatase cascade consisting of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin, its phosphoprotein substrate, inhibitor-1, and PP1. We tested this hypothesis using calcineurin inhibitors as well as different forms of inhibitor-1 loaded into postsynaptic cells. Our results suggest a signalling pathway in which calcineurin dephosphorylates and inactivates inhibitor-1. This in turn increases PP1 activity and contributes to the generation of LTD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbon monoxide: a putative neural messenger.

            Carbon monoxide, an activator of guanylyl cyclase, is formed by the action of the enzyme heme oxygenase. By in situ hybridization in brain slices, discrete neuronal localization of messenger RNA for the constitutive form of heme oxygenase throughout the brain has been demonstrated. This localization is essentially the same as that for soluble guanylyl cyclase messenger RNA. In primary cultures of olfactory neurons, zinc protoporphyrin-9, a potent selective inhibitor of heme oxygenase, depletes endogenous guanosine 3',5'-monophosphate (cGMP). Thus, carbon monoxide, like nitric oxide, may be a physiologic regulator of cGMP. These findings, together with the neuronal localizations of heme oxygenase, suggest that carbon monoxide may function as a neurotransmitter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation.

              In many brain areas, including the cerebellar cortex, neocortex, hippocampus, striatum and nucleus accumbens, brief activation of an excitatory pathway can produce long-term depression (LTD) of synaptic transmission. In most preparations, induction of LTD has been shown to require a minimum level of postsynaptic depolarization and a rise in the intracellular Ca2+ concentration [Ca2+]i in the postsynaptic neurone. Thus, induction conditions resemble those described for the initiation of associative long-term potentiation (LTP). However, data from structures susceptible to both LTD and LTP suggest that a stronger depolarization and a greater increase in [Ca2+]i are required to induce LTP than to initiate LTD. The source of Ca2+ appears to be less critical for the differential induction of LTP and LTD than the amplitude of the Ca2+ surge, since the activation of voltage- and ligand-gated Ca2+ conductances as well as the release from intracellular stores have all been shown to contribute to both LTD and LTP induction. LTD is induceable even at inactive synapses if [Ca2+]i is raised to the appropriate level by antidromic or heterosynaptic activation, or by raising the extracellular Ca2+ concentration [Ca2+]o. These conditions suggest a rule (called here the ABS rule) for activity-dependent synaptic modifications that differs from the classical Hebb rule and that can account for both homosynaptic LTD and LTP as well as for heterosynaptic competition and associativity.
                Bookmark

                Author and article information

                Journal
                10.1016/0959-4388(94)90101-5
                http://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article