23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of daidzein on Parkinson disease induced by reserpine in rats

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson disease is a neurodegenerative disorder characterised by the cardinal symptoms of stiffness, resting tremor, slowness (bradykinesia) and reduction of movement (hypokinesia). Involvement of oxidative damage has been reported in the pathophysiology of Parkinson disease and its related complications. The purpose of this study was to examine the effect of daidzein to quench the free radicals produced as a result of the increased oxidative stress in Parkinson disease.Parkinson disease is induced by administration of reserpine (5 mg/kg/day, i.p) for 5 consecutive days. The symptoms of PD such as tremors, akinesia and rigidity were evaluated. The effect was evaluated by assessing various behavioral parameters (grip strength and locomotor activity), biochemical parameters (lipid peroxidation, and reduced glutathione), as well as histopathological parameters in brain tissue. Daidzein (an antioxidant) was administered at the dose of 50 and 100 mg/kg, p.o. once daily for 5 days. Reserpine significantly causes tremor, rigidity, akinesia and oxidative damage which were reversed by daily administration of daidzein when compared toreserpine group. There was a significant histological improvement in the neuronal degeneration in brain tissue with daidzein. So, the results indicated the protective effect of daidzein against PD.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease.

          Neuroinflammatory processes play a significant role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies all support the presence of an neuroinflammatory cascade in disease. This is highlighted by the neurotoxic potential of microglia . In steady state, microglia serve to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of innate and adaptive immune responses. In neurodegenerative diseases, activated microglia affect neuronal injury and death through production of glutamate, pro-inflammatory factors, reactive oxygen species, quinolinic acid amongst others and by mobilization of adaptive immune responses and cell chemotaxis leading to transendothelial migration of immunocytes across the blood-brain barrier and perpetuation of neural damage. As disease progresses, inflammatory secretions engage neighboring glial cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation perpetuating tissue injury. Such pathogenic processes contribute to neurodegeneration in PD. Research from others and our own laboratories seek to harness such inflammatory processes with the singular goal of developing therapeutic interventions that positively affect the tempo and progression of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data

            Backgound The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson’s disease (PD). Methods The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson’s Disease Rating Scale (UPDRS) to measure clinical symptoms. Results The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p<0.05 for all values) in the PD group treated with NAC, and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%, p = 0.01). Conclusions The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. Trial Registration ClinicalTrials.gov NCT02445651
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental lewy body disease

                Bookmark

                Author and article information

                Journal
                bjps
                Brazilian Journal of Pharmaceutical Sciences
                Braz. J. Pharm. Sci.
                Universidade de São Paulo, Faculdade de Ciências Farmacêuticas (São Paulo, SP, Brazil )
                2175-9790
                2020
                : 56
                : e18388
                Affiliations
                [1] Ghaziabad Uttar Pradesh orgnameI.T.S College of Pharmacy India
                Article
                S1984-82502020000100559 S1984-8250(20)05600000559
                10.1590/s2175-97902019000318388
                e6a13991-7cff-4de2-937b-c47d4760211f

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 24 September 2018
                : 23 May 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 22, Pages: 0
                Product

                SciELO Brazil

                Self URI: Full text available only in PDF format (EN)
                Categories
                Articles

                Daidzein,Carbidopa and Levodopa combination,Reserpine,Parkinson

                Comments

                Comment on this article