53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial quality control is essential in highly structured cells such as neurons and muscles. In skeletal muscle the mitochondrial fission proteins are reduced in different physiopathological conditions including ageing sarcopenia, cancer cachexia and chemotherapy-induced muscle wasting. However, whether mitochondrial fission is essential for muscle homeostasis is still unclear. Here we show that muscle-specific loss of the pro-fission dynamin related protein (DRP) 1 induces muscle wasting and weakness. Constitutive Drp1 ablation in muscles reduces growth and causes animal death while inducible deletion results in atrophy and degeneration. Drp1 deficient mitochondria are morphologically bigger and functionally abnormal. The dysfunctional mitochondria signals to the nucleus to induce the ubiquitin-proteasome system and an Unfolded Protein Response while the change of mitochondrial volume results in an increase of mitochondrial Ca2+ uptake and myofiber death. Our findings reveal that morphology of mitochondrial network is critical for several biological processes that control nuclear programs and Ca2+ handling.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts.

          Mitochondria participate in key metabolic reactions of the cell and regulate crucial signaling pathways including apoptosis. Although several approaches are available to study mitochondrial function in situ are available, investigating functional mitochondria that have been isolated from different tissues and from cultured cells offers still more unmatched advantages. This protocol illustrates a step-by-step procedure to obtain functional mitochondria with high yield from cells grown in culture, liver and muscle. The isolation procedures described here require 1-2 hours, depending on the source of the organelles. The polarographic analysis can be completed in 1 hour.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice.

            Mitochondrial morphology is dynamically controlled by a balance between fusion and fission. The physiological importance of mitochondrial fission in vertebrates is less clearly defined than that of mitochondrial fusion. Here we show that mice lacking the mitochondrial fission GTPase Drp1 have developmental abnormalities, particularly in the forebrain, and die after embryonic day 12.5. Neural cell-specific (NS) Drp1(-/-) mice die shortly after birth as a result of brain hypoplasia with apoptosis. Primary culture of NS-Drp1(-/-) mouse forebrain showed a decreased number of neurites and defective synapse formation, thought to be due to aggregated mitochondria that failed to distribute properly within the cell processes. These defects were reflected by abnormal forebrain development and highlight the importance of Drp1-dependent mitochondrial fission within highly polarized cells such as neurons. Moreover, Drp1(-/-) murine embryonic fibroblasts and embryonic stem cells revealed that Drp1 is required for a normal rate of cytochrome c release and caspase activation during apoptosis, although mitochondrial outer membrane permeabilization, as examined by the release of Smac/Diablo and Tim8a, may occur independently of Drp1 activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence

              Summary Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.
                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2019
                June 12 2019
                December 2019
                : 10
                : 1
                Article
                10.1038/s41467-019-10226-9
                f6b86b00-0c14-4e3e-a52a-e5db0773fdd6
                © 2019

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article