109
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis.

      Science (New York, N.Y.)

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A high-resolution root spatiotemporal map reveals dominant expression patterns.

            Transcriptional programs that regulate development are exquisitely controlled in space and time. Elucidating these programs that underlie development is essential to understanding the acquisition of cell and tissue identity. We present microarray expression profiles of a high-resolution set of developmental time points within a single Arabidopsis root and a comprehensive map of nearly all root cell types. These cell type-specific transcriptional signatures often predict previously unknown cellular functions. A computational pipeline identified dominant expression patterns that demonstrate transcriptional similarity between disparate cell types. Dominant expression patterns along the root's longitudinal axis do not strictly correlate with previously defined developmental zones, and in many cases, we observed expression fluctuation along this axis. Both robust co-regulation of gene expression and potential phasing of gene expression were identified between individual roots. Methods that combine these profiles demonstrate transcriptionally rich and complex programs that define Arabidopsis root development in both space and time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis.

              Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of lignin and cellulose. Several genes involved in lignin and cellulose biosynthesis have been characterized, but the factors that regulate the formation of secondary walls in woody tissues remain to be identified. In this study, we show that plant-specific transcription factors, designated NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis thaliana. In nst1-1 nst3-1 double knockout plants, the secondary wall thickenings in interfascicular fibers and secondary xylem, except for vascular vessels, were completely suppressed without affecting formation of cells destined to be woody tissues. Conversely, as shown previously for NST1, overexpression of NST3 induced ectopic secondary wall thickenings in various aboveground tissues. Furthermore, the expression of chimeric repressors derived from NST1 and NST3 suppressed secondary wall thickenings in the presumptive interfascicular fibers. Because putative orthologs of NST1 and NST3 are present in the genome of poplar, our results suggest that they are also key regulators of the formation of secondary walls in woody plants and could be used as a tool for the genetic engineering of wood and its derivatives.
                Bookmark

                Author and article information

                Journal
                23950498
                10.1126/science.1241602

                Comments

                Comment on this article