Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A role for BATF3 in TH9 differentiation and T-cell-driven mucosal pathologies

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T helper 9 (TH9) cells are important for the development of inflammatory and allergic diseases. The TH9 transcriptional network converge signals from cytokines and antigen presentation but is incompletely understood. Here, we identified TL1A, a member of the TNF superfamily, as strong inducer of mouse and human TH9 differentiation. Mechanistically, TL1A induced the expression of the transcription factors BATF and BATF3 and facilitated their binding to the Il9 promoter leading to enhanced secretion of IL-9. BATF- and BATF3-deficiencies impaired IL-9 secretion under TH9 and TH9-TL1A polarizing conditions. In vivo, using a T cell transfer model we demonstrated that TL1A promoted IL-9-dependent, TH9 cell-induced intestinal and lung inflammation. Neutralizing IL-9 antibodies attenuated TL1A-driven mucosal inflammation. Batf3 −/− TH9-TL1A cells induced reduced inflammation and cytokine expression in vivo compared to WT cells. Our results demonstrate that TL1A promotes TH9 cell differentiation and function and define a role of BATF3 in T cell driven mucosal inflammation.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.

          Although in vitro observations suggest that cross-presentation of antigens is mediated primarily by CD8alpha+ dendritic cells, in vivo analysis has been hampered by the lack of systems that selectively eliminate this cell lineage. We show that deletion of the transcription factor Batf3 ablated development of CD8alpha+ dendritic cells, allowing us to examine their role in immunity in vivo. Dendritic cells from Batf3-/- mice were defective in cross-presentation, and Batf3-/- mice lacked virus-specific CD8+ T cell responses to West Nile virus. Importantly, rejection of highly immunogenic syngeneic tumors was impaired in Batf3-/- mice. These results suggest an important role for CD8alpha+ dendritic cells and cross-presentation in responses to viruses and in tumor rejection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STAT3 regulates cytokine-mediated generation of inflammatory helper T cells.

            Interleukin-17 (IL-17)-producing helper T (TH) cells, named as TH(IL-17), TH17, or inflammatory TH (THi), have been recently identified as a novel effector lineage. However, how cytokine signals mediate THi differentiation is unclear. We found that IL-6 functioned to up-regulate IL-23R and that IL-23 synergized with IL-6 in promoting THi generation. STAT3, activated by both IL-6 and IL-23, plays a critical role in THi development. A hyperactive form of STAT3 promoted THi development, whereas this differentiation process was greatly impaired in STAT3-deficient T cells. Moreover, STAT3 regulated the expression of retinoic acid receptor-related orphan receptor gamma-T (RORgamma t), a THi-specific transcriptional regulator; STAT3 deficiency impaired RORgamma t expression and led to elevated expression of T-box expressed in T cells (T-bet) and Forkhead box P3 (Foxp3). Our data thus demonstrate a pathway whereby cytokines regulate THi differentiation through a selective STAT transcription factor that functions to regulate lineage-specific gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset.

              Since the discovery of T helper type 1 and type 2 effector T cell subsets 20 years ago, inducible regulatory T cells and interleukin 17 (IL-17)-producing T helper cells have been added to the 'portfolio' of helper T cells. It is unclear how many more effector T cell subsets there may be and to what degree their characteristics are fixed or flexible. Here we show that transforming growth factor-beta, a cytokine at the center of the differentiation of IL-17-producing T helper cells and inducible regulatory T cells, 'reprograms' T helper type 2 cells to lose their characteristic profile and switch to IL-9 secretion or, in combination with IL-4, drives the differentiation of 'T(H)-9' cells directly. Thus, transforming growth factor-beta constitutes a regulatory 'switch' that in combination with other cytokines can 'reprogram' effector T cell differentiation along different pathways.
                Bookmark

                Author and article information

                Journal
                Mucosal Immunology
                Mucosal Immunol
                Springer Nature
                1933-0219
                1935-3456
                January 7 2019
                Article
                10.1038/s41385-018-0122-4
                6462229
                30617301
                © 2019

                http://www.springer.com/tdm

                Comments

                Comment on this article