28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neural and genetic foundations of face recognition and prosopagnosia.

      Journal of Neuropsychology
      Autistic Disorder, genetics, physiopathology, psychology, Face, Humans, Nerve Net, Prosopagnosia, congenital, Recognition (Psychology), physiology, Social Behavior Disorders, Visual Perception

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Faces are of essential importance for human social life. They provide valuable information about the identity, expression, gaze, health, and age of a person. Recent face-processing models assume highly interconnected neural structures between different temporal, occipital, and frontal brain areas with several feedback loops. A selective deficit in the visual learning and recognition of faces is known as prosopagnosia, which can be found both in acquired and congenital form. Recently, a hereditary sub-type of congenital prosopagnosia with a very high prevalence rate of 2.5% has been identified. Recent research results show that hereditary prosopagnosia is a clearly circumscribed face-processing deficit with a characteristic set of clinical symptoms. Comparing face processing of people of prosopagnosia with that of controls can help to develop a more conclusive and integrated model of face processing. Here, we provide a summary of the current state of face processing research. We also describe the different types of prosopagnosia and present the set of typical symptoms found in the hereditary type. Finally, we will discuss the implications for future face recognition research.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: not found
          • Article: not found

          The distributed human neural system for face perception

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception

            Using functional magnetic resonance imaging (fMRI), we found an area in the fusiform gyrus in 12 of the 15 subjects tested that was significantly more active when the subjects viewed faces than when they viewed assorted common objects. This face activation was used to define a specific region of interest individually for each subject, within which several new tests of face specificity were run. In each of five subjects tested, the predefined candidate “face area” also responded significantly more strongly to passive viewing of (1) intact than scrambled two-tone faces, (2) full front-view face photos than front-view photos of houses, and (in a different set of five subjects) (3) three-quarter-view face photos (with hair concealed) than photos of human hands; it also responded more strongly during (4) a consecutive matching task performed on three-quarter-view faces versus hands. Our technique of running multiple tests applied to the same region defined functionally within individual subjects provides a solution to two common problems in functional imaging: (1) the requirement to correct for multiple statistical comparisons and (2) the inevitable ambiguity in the interpretation of any study in which only two or three conditions are compared. Our data allow us to reject alternative accounts of the function of the fusiform face area (area “FF”) that appeal to visual attention, subordinate-level classification, or general processing of any animate or human forms, demonstrating that this region is selectively involved in the perception of faces.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A forkhead-domain gene is mutated in a severe speech and language disorder.

              Individuals affected with developmental disorders of speech and language have substantial difficulty acquiring expressive and/or receptive language in the absence of any profound sensory or neurological impairment and despite adequate intelligence and opportunity. Although studies of twins consistently indicate that a significant genetic component is involved, most families segregating speech and language deficits show complex patterns of inheritance, and a gene that predisposes individuals to such disorders has not been identified. We have studied a unique three-generation pedigree, KE, in which a severe speech and language disorder is transmitted as an autosomal-dominant monogenic trait. Our previous work mapped the locus responsible, SPCH1, to a 5.6-cM interval of region 7q31 on chromosome 7 (ref. 5). We also identified an unrelated individual, CS, in whom speech and language impairment is associated with a chromosomal translocation involving the SPCH1 interval. Here we show that the gene FOXP2, which encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain, is directly disrupted by the translocation breakpoint in CS. In addition, we identify a point mutation in affected members of the KE family that alters an invariant amino-acid residue in the forkhead domain. Our findings suggest that FOXP2 is involved in the developmental process that culminates in speech and language.
                Bookmark

                Author and article information

                Comments

                Comment on this article