313
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Candidalysin is a fungal peptide toxin critical for mucosal infection.

      Nature

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Nonfilamentous C. albicans mutants are avirulent.

          Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/efg1 double mutant in Candida (Cph1p is the Ste12p homolog and Efg1p is the Phd1p homolog) is also defective in filamentous growth, unable to form hyphae or pseudohyphae in response to many stimuli, including serum or macrophages. This Candida cph1/cph1 efg1/efg1 double mutant, locked in the yeast form, is avirulent in a mouse model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isogenic strain construction and gene mapping in Candida albicans.

            Genetic manipulation of Candida albicans is constrained by its diploid genome and asexual life cycle. Recessive mutations are not expressed when heterozygous and undesired mutations introduced in the course of random mutagenesis cannot be removed by genetic back-crossing. To circumvent these problems, we developed a genotypic screen that permitted identification of a heterozygous recessive mutation at the URA3 locus. The mutation was introduced by targeted mutagenesis, homologous integration of transforming DNA, to avoid introduction of extraneous mutations. The ura3 mutation was rendered homozygous by a second round of transformation resulting in a Ura- strain otherwise isogenic with the parental clinical isolate. Subsequent mutation of the Ura- strain was achieved by targeted mutagenesis using the URA3 gene as a selectable marker. URA3 selection was used repeatedly for the sequential introduction of mutations by flanking the URA3 gene with direct repeats of the Salmonella typhimurium hisG gene. Spontaneous intrachromosomal recombination between the flanking repeats excised the URA3 gene restoring a Ura- phenotype. These Ura- segregants were selected on 5-fluoroorotic acid-containing medium and used in the next round of mutagenesis. To permit the physical mapping of disrupted genes, the 18-bp recognition sequence of the endonuclease I-SceI was incorporated into the hisG repeats. Site-specific cleavage of the chromosome with I-SceI revealed the position of the integrated sequences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions.

              Disruption of newly identified genes in the pathogen Candida albicans is a vital step in determination of gene function. Several gene disruption methods described previously employ long regions of homology flanking a selectable marker. Here, we describe disruption of C. albicans genes with PCR products that have 50 to 60 bp of homology to a genomic sequence on each end of a selectable marker. We used the method to disrupt two known genes, ARG5 and ADE2, and two sequences newly identified through the Candida genome project, HRM101 and ENX3. HRM101 and ENX3 are homologous to genes in the conserved RIM101 (previously called RIM1) and PacC pathways of Saccharomyces cerevisiae and Aspergillus nidulans. We show that three independent hrm101/hrm101 mutants and two independent enx3/enx3 mutants are defective in filamentation on Spider medium. These observations argue that HRM101 and ENX3 sequences are indeed portions of genes and that the respective gene products have related functions.
                Bookmark

                Author and article information

                Journal
                27027296
                10.1038/nature17625

                Comments

                Comment on this article