89
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The onslaught of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated coronavirus disease 2019 (COVID-19) has gripped the world in a pandemic and challenged the culture, economy and healthcare infrastructure of its population. It has become increasingly important that health systems and their clinicians adopt a universal consolidated framework to recognize the staged progression of COVID-19 illness in order to deploy and investigate targeted therapy likely to save lives. The largest report of COVID-19 from the Chinese Centers for Disease Control and Prevention summarized findings from 72, 314 cases and noted that while 81% were of a mild nature with an overall case fatality rate of 2.3%, a small sub-group of 5% presented with respiratory failure, septic shock and multi-organ dysfunction resulting in fatality in half of such cases, a finding that suggests that it is within this group that the opportunity for life saving measures may be most pertinent. 1 Once the disease is manifest, supportive measures are initiated with quarantines; however a systematic disease modifying therapeutic approach remains empirical. Pharmacotherapy targeted against the virus holds the greatest promise when applied early in the course of the illness, but its usefulness in advanced stages may be doubtful. 2 , 3 Similarly, use of anti-inflammatory therapy applied too early may not be necessary and could even provoke viral replication such as in the case of corticosteroids. 4 It appears that there are two distinct but overlapping pathological subsets, the first triggered by the virus itself and the second, the host response. Whether in native state, immunoquiescent state as in the elderly, or immunosuppressed state as in heart transplantation, the disease tends to present and follow these two phases, albeit in different levels of severity. The early reports in heart transplantation suggest that symptom expression during the phase of establishment of infection are similar to non-immunosuppressed individuals; however, in limited series the second wave determined by the host-inflammatory response appears to be milder, possibly due to the concomitant use of immuno-modulatory drugs. 5 , 6 Similarly, an epidemiological study from Wuhan in a cohort of 87 patients suggests that precautionary measures of social distancing, sanitization and general hygiene allow heart transplant recipients to experience a low rate of COVID-19 illness. 7 We do not of course, know if they are asymptomatic carriers, since in this survey-based study universal testing during the early 3 months was not employed. One interesting fact in this study was that many heart transplant recipients have hematological changes of lymphopenia due to the effects of immunosuppressive therapy which may obfuscate the laboratory interpretation of infection in such patients should they get infected. Much confusion abounds in the therapeutic tactics employed in COVID-19. It is imperative that a structured approach to clinical phenotyping be undertaken to distinguish the phase where the viral pathogenicity is dominant versus when the host inflammatory response overtakes the pathology. In this editorial we propose a clinical staging system to establish a standardized nomenclature for uniform evaluation and reporting of this disease, to facilitate therapeutic application and evaluate response. We propose the use of a 3-stage classification system, recognizing that COVID-19 illness exhibits three grades of increasing severity which correspond with distinct clinical findings, response to therapy and clinical outcome (Figure ). Figure 1 Classification of COVID-19 Disease States and Potential Therapeutic Targets Figure 1 The figure shows 3 escalating phases of disease progression with COVID-19, with associated signs, symptoms and potential phase-specific therapies. ARDS = Acute respiratory distress syndrome; CRP = C-reactive protein; IL = Interleukin; JAK = Janus Kinase; LDH=Lactate DeHydrogenase; SIRS = Systemic inflammatory response syndrome. Stage I (mild) – Early Infection The initial stage occurs at the time of inoculation and early establishment of disease. For most people, this involves an incubation period associated with mild and often non-specific symptoms such as malaise, fever and a dry cough. During this period, SARS-CoV-2 multiplies and establishes residence in the host, primarily focusing on the respiratory system. Similar to its older relative, SARS-CoV (responsible for the 2002-2003 SARS outbreak), SARS-CoV-2 binds to its target using the angiotensin-converting enzyme 2 (ACE2) receptor on human cells. 8 These receptors are abundantly present on human lung and small intestine epithelium, as well as the vascular endothelium. As a result of the airborne method of transmission as well as affinity for pulmonary ACE2 receptors, the infection usually presents with mild respiratory and systemic symptoms. Diagnosis at this stage includes respiratory sample PCR, serum testing for SARS-CoV-2 IgG and IgM, along with chest imaging, complete blood count (CBC) and liver function tests. CBC may reveal a lymphopenia and neutrophilia without other significant abnormalities. Treatment at this stage is primarily targeted towards symptomatic relief. Should a viable anti-viral therapy (such as remdesivir) be proven beneficial, targeting selected patients during this stage may reduce duration of symptoms, minimize contagiousness and prevent progression of severity. In patients who can keep the virus limited to this stage of COVID-19, prognosis and recovery is excellent. Stage II (moderate) - Pulmonary Involvement (IIa) without and (IIb) with hypoxia In the second stage of established pulmonary disease, viral multiplication and localized inflammation in the lung is the norm. During this stage, patients develop a viral pneumonia, with cough, fever and possibly hypoxia (defined as a PaO2/FiO2 of <300 mmHg). Imaging with chest roentgenogram or computerized tomography reveals bilateral infiltrates or ground glass opacities. Blood tests reveal increasing lymphopenia, along with transaminitis. Markers of systemic inflammation may be elevated, but not remarkably so. It is at this stage that most patients with COVID-19 would need to be hospitalized for close observation and management. Treatment would primarily consist of supportive measures and available anti-viral therapies such as remdesivir (available under compassionate and trial use). It should be noted that serum procalcitonin is low to normal in most cases of COVID-19 pneumonia. In early stage II (without significant hypoxia), the use of corticosteroids in patients with COVID-19 may be avoided. 4 However, if hypoxia ensues, it is likely that patients will progress to requiring mechanical ventilation and in that situation, we believe that use of anti-inflammatory therapy such as with corticosteroids may be useful and can be judiciously employed. Thus, Stage II disease should be subdivided into Stage IIa (without hypoxia) and Stage IIb (with hypoxia). Stage III (severe) – Systemic Hyperinflammation A minority of COVID-19 patients will transition into the third and most severe stage of illness, which manifests as an extra-pulmonary systemic hyperinflammation syndrome. In this stage, markers of systemic inflammation appear to be elevated. COVID-19 infection results in a decrease in helper, suppressor and regulatory T cell counts. 9 Studies have shown that inflammatory cytokines and biomarkers such as interleukin (IL)-2, IL-6, IL-7, granulocyte-colony stimulating factor, macrophage inflammatory protein 1-α, tumor necrosis factor-α, C-reactive protein, ferritin, and D-dimer are significantly elevated in those patients with more severe disease. 10 Troponin and N-terminal pro B-type natriuretic peptide (NT-proBNP) can also be elevated. A form akin to hemophagocytic lymphohistiocytosis (sHLH) may occur in patients in this advanced stage of disease. 11 In this stage, shock, vasoplegia, respiratory failure and even cardiopulmonary collapse are discernable. Systemic organ involvement, even myocarditis, would manifest during this stage. Tailored therapy in stage III hinges on the use of immunomodulatory agents to reduce systemic inflammation before it overwhelmingly results in multi-organ dysfunction. In this phase, use of corticosteroids may be justified in concert with the use of cytokine inhibitors such as tocilizumab (IL-6 inhibitor) or anakinra (IL-1 receptor antagonist). 11 Intravenous immune globulin (IVIG) may also play a role in modulating an immune system that is in a hyperinflammatory state. Overall, the prognosis and recovery from this critical stage of illness is poor, and rapid recognition and deployment of such therapy may have the greatest yield. The first open-label randomized controlled clinical trial of antiviral therapy was recently reported. 3 In this study, 199 patients were randomly allocated to the antiviral agents lopinavir–ritonavir or to standard of care and this regimen was not found to be particularly effective. One reason for this may have been that the patients were enrolled during the pulmonary stage with hypoxia (stage IIb) when the viral pathogenicity may have been only one lesser dominant aspect of the overall pathophysiology, and host inflammatory responses were the predominant pathophysiology We believe that this proposed 3-stage classification system for COVID-19 illness will serve to develop a uniform scaffold to build structured therapeutic experience as healthcare systems globally are besieged by this crisis, in patients with or without transplantation. Disclosure Dr. Siddiqi has nothing to declare. Dr. Mehra reports no direct conflicts pertinent to the development of this paper. Other general conflicts include consulting relationships with Abbott, Medtronic, Janssen, Mesoblast, Portola, Bayer, NupulseCV, FineHeart, Leviticus and Triple Gene.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China

          Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that was first reported in Wuhan, China, and has subsequently spread worldwide. Risk factors for the clinical outcomes of COVID-19 pneumonia have not yet been well delineated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro

            Dear Editor, In December 2019, a novel pneumonia caused by a previously unknown pathogen emerged in Wuhan, a city of 11 million people in central China. The initial cases were linked to exposures in a seafood market in Wuhan. 1 As of January 27, 2020, the Chinese authorities reported 2835 confirmed cases in mainland China, including 81 deaths. Additionally, 19 confirmed cases were identified in Hong Kong, Macao and Taiwan, and 39 imported cases were identified in Thailand, Japan, South Korea, United States, Vietnam, Singapore, Nepal, France, Australia and Canada. The pathogen was soon identified as a novel coronavirus (2019-nCoV), which is closely related to sever acute respiratory syndrome CoV (SARS-CoV). 2 Currently, there is no specific treatment against the new virus. Therefore, identifying effective antiviral agents to combat the disease is urgently needed. An efficient approach to drug discovery is to test whether the existing antiviral drugs are effective in treating related viral infections. The 2019-nCoV belongs to Betacoronavirus which also contains SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). Several drugs, such as ribavirin, interferon, lopinavir-ritonavir, corticosteroids, have been used in patients with SARS or MERS, although the efficacy of some drugs remains controversial. 3 In this study, we evaluated the antiviral efficiency of five FAD-approved drugs including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two well-known broad-spectrum antiviral drugs remdesivir (GS-5734) and favipiravir (T-705) against a clinical isolate of 2019-nCoV in vitro. Standard assays were carried out to measure the effects of these compounds on the cytotoxicity, virus yield and infection rates of 2019-nCoVs. Firstly, the cytotoxicity of the candidate compounds in Vero E6 cells (ATCC-1586) was determined by the CCK8 assay. Then, Vero E6 cells were infected with nCoV-2019BetaCoV/Wuhan/WIV04/2019 2 at a multiplicity of infection (MOI) of 0.05 in the presence of varying concentrations of the test drugs. DMSO was used in the controls. Efficacies were evaluated by quantification of viral copy numbers in the cell supernatant via quantitative real-time RT-PCR (qRT-PCR) and confirmed with visualization of virus nucleoprotein (NP) expression through immunofluorescence microscopy at 48 h post infection (p.i.) (cytopathic effect was not obvious at this time point of infection). Among the seven tested drugs, high concentrations of three nucleoside analogs including ribavirin (half-maximal effective concentration (EC50) = 109.50 μM, half-cytotoxic concentration (CC50) > 400 μM, selectivity index (SI) > 3.65), penciclovir (EC50 = 95.96 μM, CC50 > 400 μM, SI > 4.17) and favipiravir (EC50 = 61.88 μM, CC50 > 400 μM, SI > 6.46) were required to reduce the viral infection (Fig. 1a and Supplementary information, Fig. S1). However, favipiravir has been shown to be 100% effective in protecting mice against Ebola virus challenge, although its EC50 value in Vero E6 cells was as high as 67 μM, 4 suggesting further in vivo studies are recommended to evaluate this antiviral nucleoside. Nafamostat, a potent inhibitor of MERS-CoV, which prevents membrane fusion, was inhibitive against the 2019-nCoV infection (EC50 = 22.50 μM, CC50 > 100 μM, SI > 4.44). Nitazoxanide, a commercial antiprotozoal agent with an antiviral potential against a broad range of viruses including human and animal coronaviruses, inhibited the 2019-nCoV at a low-micromolar concentration (EC50 = 2.12 μM; CC50 > 35.53 μM; SI > 16.76). Further in vivo evaluation of this drug against 2019-nCoV infection is recommended. Notably, two compounds remdesivir (EC50 = 0.77 μM; CC50 > 100 μM; SI > 129.87) and chloroquine (EC50 = 1.13 μM; CC50 > 100 μM, SI > 88.50) potently blocked virus infection at low-micromolar concentration and showed high SI (Fig. 1a, b). Fig. 1 The antiviral activities of the test drugs against 2019-nCoV in vitro. a Vero E6 cells were infected with 2019-nCoV at an MOI of 0.05 in the treatment of different doses of the indicated antivirals for 48 h. The viral yield in the cell supernatant was then quantified by qRT-PCR. Cytotoxicity of these drugs to Vero E6 cells was measured by CCK-8 assays. The left and right Y-axis of the graphs represent mean % inhibition of virus yield and cytotoxicity of the drugs, respectively. The experiments were done in triplicates. b Immunofluorescence microscopy of virus infection upon treatment of remdesivir and chloroquine. Virus infection and drug treatment were performed as mentioned above. At 48 h p.i., the infected cells were fixed, and then probed with rabbit sera against the NP of a bat SARS-related CoV 2 as the primary antibody and Alexa 488-labeled goat anti-rabbit IgG (1:500; Abcam) as the secondary antibody, respectively. The nuclei were stained with Hoechst dye. Bars, 100 μm. c and d Time-of-addition experiment of remdesivir and chloroquine. For “Full-time” treatment, Vero E6 cells were pre-treated with the drugs for 1 h, and virus was then added to allow attachment for 2 h. Afterwards, the virus–drug mixture was removed, and the cells were cultured with drug-containing medium until the end of the experiment. For “Entry” treatment, the drugs were added to the cells for 1 h before viral attachment, and at 2 h p.i., the virus–drug mixture was replaced with fresh culture medium and maintained till the end of the experiment. For “Post-entry” experiment, drugs were added at 2 h p.i., and maintained until the end of the experiment. For all the experimental groups, cells were infected with 2019-nCoV at an MOI of 0.05, and virus yield in the infected cell supernatants was quantified by qRT-PCR c and NP expression in infected cells was analyzed by Western blot d at 14 h p.i. Remdesivir has been recently recognized as a promising antiviral drug against a wide array of RNA viruses (including SARS/MERS-CoV 5 ) infection in cultured cells, mice and nonhuman primate (NHP) models. It is currently under clinical development for the treatment of Ebola virus infection. 6 Remdesivir is an adenosine analogue, which incorporates into nascent viral RNA chains and results in pre-mature termination. 7 Our time-of-addition assay showed remdesivir functioned at a stage post virus entry (Fig. 1c, d), which is in agreement with its putative anti-viral mechanism as a nucleotide analogue. Warren et al. showed that in NHP model, intravenous administration of 10 mg/kg dose of remdesivir resulted in concomitant persistent levels of its active form in the blood (10 μM) and conferred 100% protection against Ebola virus infection. 7 Our data showed that EC90 value of remdesivir against 2019-nCoV in Vero E6 cells was 1.76 μM, suggesting its working concentration is likely to be achieved in NHP. Our preliminary data (Supplementary information, Fig. S2) showed that remdesivir also inhibited virus infection efficiently in a human cell line (human liver cancer Huh-7 cells), which is sensitive to 2019-nCoV. 2 Chloroquine, a widely-used anti-malarial and autoimmune disease drug, has recently been reported as a potential broad-spectrum antiviral drug. 8,9 Chloroquine is known to block virus infection by increasing endosomal pH required for virus/cell fusion, as well as interfering with the glycosylation of cellular receptors of SARS-CoV. 10 Our time-of-addition assay demonstrated that chloroquine functioned at both entry, and at post-entry stages of the 2019-nCoV infection in Vero E6 cells (Fig. 1c, d). Besides its antiviral activity, chloroquine has an immune-modulating activity, which may synergistically enhance its antiviral effect in vivo. Chloroquine is widely distributed in the whole body, including lung, after oral administration. The EC90 value of chloroquine against the 2019-nCoV in Vero E6 cells was 6.90 μM, which can be clinically achievable as demonstrated in the plasma of rheumatoid arthritis patients who received 500 mg administration. 11 Chloroquine is a cheap and a safe drug that has been used for more than 70 years and, therefore, it is potentially clinically applicable against the 2019-nCoV. Our findings reveal that remdesivir and chloroquine are highly effective in the control of 2019-nCoV infection in vitro. Since these compounds have been used in human patients with a safety track record and shown to be effective against various ailments, we suggest that they should be assessed in human patients suffering from the novel coronavirus disease. Supplementary information Supplementary information, Materials and Figures
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19

              Abstract Background No therapeutics have yet been proven effective for the treatment of severe illness caused by SARS-CoV-2. Methods We conducted a randomized, controlled, open-label trial involving hospitalized adult patients with confirmed SARS-CoV-2 infection, which causes the respiratory illness Covid-19, and an oxygen saturation (Sao 2) of 94% or less while they were breathing ambient air or a ratio of the partial pressure of oxygen (Pao 2) to the fraction of inspired oxygen (Fio 2) of less than 300 mm Hg. Patients were randomly assigned in a 1:1 ratio to receive either lopinavir–ritonavir (400 mg and 100 mg, respectively) twice a day for 14 days, in addition to standard care, or standard care alone. The primary end point was the time to clinical improvement, defined as the time from randomization to either an improvement of two points on a seven-category ordinal scale or discharge from the hospital, whichever came first. Results A total of 199 patients with laboratory-confirmed SARS-CoV-2 infection underwent randomization; 99 were assigned to the lopinavir–ritonavir group, and 100 to the standard-care group. Treatment with lopinavir–ritonavir was not associated with a difference from standard care in the time to clinical improvement (hazard ratio for clinical improvement, 1.24; 95% confidence interval [CI], 0.90 to 1.72). Mortality at 28 days was similar in the lopinavir–ritonavir group and the standard-care group (19.2% vs. 25.0%; difference, −5.8 percentage points; 95% CI, −17.3 to 5.7). The percentages of patients with detectable viral RNA at various time points were similar. In a modified intention-to-treat analysis, lopinavir–ritonavir led to a median time to clinical improvement that was shorter by 1 day than that observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91). Gastrointestinal adverse events were more common in the lopinavir–ritonavir group, but serious adverse events were more common in the standard-care group. Lopinavir–ritonavir treatment was stopped early in 13 patients (13.8%) because of adverse events. Conclusions In hospitalized adult patients with severe Covid-19, no benefit was observed with lopinavir–ritonavir treatment beyond standard care. Future trials in patients with severe illness may help to confirm or exclude the possibility of a treatment benefit. (Funded by Major Projects of National Science and Technology on New Drug Creation and Development and others; Chinese Clinical Trial Register number, ChiCTR2000029308.)
                Bookmark

                Author and article information

                Journal
                J. Heart Lung Transplant.
                The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation
                Elsevier BV
                1557-3117
                1053-2498
                May 2020
                : 39
                : 5
                Affiliations
                [1 ] Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
                [2 ] Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Electronic address: mmehra@bwh.harvard.edu.
                Article
                S1053-2498(20)31473-X
                10.1016/j.healun.2020.03.012
                7118652
                32362390
                b5e42b56-8080-4199-ab2d-a5583321f9dd
                History

                Comments

                Comment on this article